Long baseline acoustic positioning system

Last updated
Figure 1: Method of the operation of a long baseline (LBL) acoustic positioning system LBL Acoustic Positioning System Aquamap Diver.jpg
Figure 1: Method of the operation of a long baseline (LBL) acoustic positioning system

A long baseline (LBL) acoustic positioning system [1] is one of three broad classes of underwater acoustic positioning systems that are used to track underwater vehicles and divers. The other two classes are ultra short baseline systems (USBL) and short baseline systems (SBL). LBL systems are unique in that they use networks of sea-floor mounted baseline transponders as reference points for navigation. These are generally deployed around the perimeter of a work site. The LBL technique results in very high positioning accuracy and position stability that is independent of water depth. It is generally better than 1-meter and can reach a few centimeters accuracy. [2] LBL systems are generally employed for precision underwater survey work where the accuracy or position stability of ship-based (SBL, USBL) positioning systems does not suffice.

Contents

Operation and performance

Figure 2: A dive team (Envirotech Diving) with their AquaMap LBL acoustic underwater positioning system including three baseline transponders (B) and diver stations (A) mounted on scooters. The baseline stations are first deployed in the corners of a work site. Their relative position is then precisely measured using the AquaMap system's automatic acoustic self-survey capability. For geo-referenced operations, the baseline positions are surveyed by differential GPS or a laser positioning equipment (total station). During a dive, the diver station interrogates the baseline stations to measure the distances, which are then converted to positions. AquaMap Diver LBL Acoustic Positioning Equipment.jpg
Figure 2: A dive team (Envirotech Diving) with their AquaMap LBL acoustic underwater positioning system including three baseline transponders (B) and diver stations (A) mounted on scooters. The baseline stations are first deployed in the corners of a work site. Their relative position is then precisely measured using the AquaMap system's automatic acoustic self-survey capability. For geo-referenced operations, the baseline positions are surveyed by differential GPS or a laser positioning equipment (total station). During a dive, the diver station interrogates the baseline stations to measure the distances, which are then converted to positions.

Long baseline systems determine the position of a vehicle or diver by acoustically measuring the distance from a vehicle or diver interrogator to three or more seafloor deployed baseline transponders. These range measurements, which are often supplemented by depth data from pressure sensors on the devices, are then used to triangulate the position of the vehicle or diver. In figure 1, a diver mounted interrogator (A) sends a signal, which is received by the baseline transponders (B, C, D). The transponders reply, and the replies are received again by the diver station (A). Signal run time measurements now yield the distances A-B, A-C and A-D, which are used to compute the diver position by triangulation or position search algorithms. The resulting positions are relative to the location of the baseline transducers. These can be readily converted to a geo-referenced coordinate system such as latitude/longitude or UTM if the geo-positions of the baseline stations are first established.

Long baseline systems get their name from the fact that the spacing of the baseline transponders is long or similar to the distance between the diver or vehicle and the transponders. [3] That is, the baseline transponders are typically mounted in the corners of an underwater work site within which the vehicle or diver operates. This method yields an ideal geometry for positioning, in which any given error in acoustic range measurements produce only about an equivalent position error. [4] This compares to SBL and USBL systems with shorter baselines where ranging disturbances of a given amount can result in much larger position errors. Further, the mounting of the baseline transponders on the sea floor eliminates the need for converting between reference frames, as is the case for USBL or SBL positioning systems mounted on moving vessels. [5] Finally, sea floor mounting makes the positioning accuracy independent of water depth. [6] For these reasons LBL systems are generally applied to tasks where the required standard of positioning accuracy or reliability exceeds the capabilities of USBL and SBL systems.

History

The search and inspection of the lost nuclear submarine USS Thresher by the U.S. Navy oceanographic vessel USNS Mizar in 1963 is frequently credited as the origin of modern underwater acoustic navigation systems. [7] Mizar primarily used a short baseline (SBL) system to track the bathyscaphe Trieste 1. However, its capability also included seafloor transponders, which in conjunction with early navigation satellites supported station-keeping with a precision of about 300 feet, considered remarkable at the time. [8]

Examples

Figure 3: Precisely establishing the position of nuclear submarines prior to missile launches was an early application of long baseline acoustic positioning systems. Covert networks of sea floor transponders could survive and provide a precision navigation capability even after GPS satellites had been knocked out. Ohio-class submarine launches Tomahawk Cruise missiles (artist concept).jpg
Figure 3: Precisely establishing the position of nuclear submarines prior to missile launches was an early application of long baseline acoustic positioning systems. Covert networks of sea floor transponders could survive and provide a precision navigation capability even after GPS satellites had been knocked out.

By the mid-1960s and possibly earlier, the Soviets were developing underwater navigation systems including seafloor transponders to allow nuclear submarines to operate precisely while staying submerged. [9] Besides navigating through canyons and other difficult underwater terrain, there was also a need to establish the position of the submarine prior to the launch of a nuclear missile (ICBM). In 1981, acoustic positioning was proposed as part of the U.S. military's MX missile system. [10] A network of 150 covert transponder fields was envisioned. Submarines typically are guided by inertial navigation systems, but these dead reckoning systems develop position drift which must be corrected by occasional position fixes from a GNSS system. If the enemy were to knock out the GNSS satellites, the submarine could rely on the covert transponder network to establish its position and program the missile's own inertial navigation system for launch.

Related Research Articles

Sonar Technique that uses sound propagation

Sonar is a technique that uses sound propagation to navigate, communicate with or detect objects on or under the surface of the water, such as other vessels. Two types of technology share the name "sonar": passive sonar is essentially listening for the sound made by vessels; active sonar is emitting pulses of sounds and listening for echoes. Sonar may be used as a means of acoustic location and of measurement of the echo characteristics of "targets" in the water. Acoustic location in air was used before the introduction of radar. Sonar may also be used for robot navigation, and SODAR is used for atmospheric investigations. The term sonar is also used for the equipment used to generate and receive the sound. The acoustic frequencies used in sonar systems vary from very low (infrasonic) to extremely high (ultrasonic). The study of underwater sound is known as underwater acoustics or hydroacoustics.

Dynamic positioning Automatic ship station- and heading-holding systems

Dynamic positioning (DP) is a computer-controlled system to automatically maintain a vessel's position and heading by using its own propellers and thrusters. Position reference sensors, combined with wind sensors, motion sensors and gyrocompasses, provide information to the computer pertaining to the vessel's position and the magnitude and direction of environmental forces affecting its position. Examples of vessel types that employ DP include, but are not limited to, ships and semi-submersible mobile offshore drilling units (MODU), oceanographic research vessels, cable layer ships and cruise ships.

Remotely operated underwater vehicle A tethered underwater mobile device operated by a remote crew

A remotely operated underwater vehicle is a tethered underwater mobile device.

Bathymetry The study of underwater depth of lake or ocean floors

Bathymetry is the study of underwater depth of ocean floors or lake floors. In other words, bathymetry is the underwater equivalent to hypsometry or topography. The name comes from Greek βαθύς (bathus), "deep", and μέτρον (metron), "measure". Bathymetric charts are typically produced to support safety of surface or sub-surface navigation, and usually show seafloor relief or terrain as contour lines and selected depths (soundings), and typically also provide surface navigational information. Bathymetric maps may also use a Digital Terrain Model and artificial illumination techniques to illustrate the depths being portrayed. The global bathymetry is sometimes combined with topography data to yield a Global Relief Model. Paleobathymetry is the study of past underwater depths.

USNS <i>Mizar</i> (T-AGOR-11) ship

USNS Mizar (MA-48/T-AGOR-11/T-AK-272) was a vessel of the United States Navy. She was named after the star Mizar.

Autonomous underwater vehicle Unmanned underwater vehicle with autonomous guidance system

An autonomous underwater vehicle (AUV) is a robot that travels underwater without requiring input from an operator. AUVs constitute part of a larger group of undersea systems known as unmanned underwater vehicles, a classification that includes non-autonomous remotely operated underwater vehicles (ROVs) – controlled and powered from the surface by an operator/pilot via an umbilical or using remote control. In military applications an AUV is more often referred to as an unmanned undersea vehicle (UUV). Underwater gliders are a subclass of AUVs.

An acoustic Doppler current profiler (ADCP) is a hydroacoustic current meter similar to a sonar, used to measure water current velocities over a depth range using the Doppler effect of sound waves scattered back from particles within the water column. The term ADCP is a generic term for all acoustic current profilers, although the abbreviation originates from an instrument series introduced by RD Instruments in the 1980s. The working frequencies range of ADCPs range from 38 kHz to several Megahertz. The device used in the air for wind speed profiling using sound is known as SODAR and works with the same underlying principles.

A navigation system is a computing system that aids in navigation. Navigation systems may be entirely on board the vehicle or vessel that the system is controlling or located elsewhere, making use of radio or other signal transmission to control the vehicle or vessel. In some cases, a combination of these methods is used.

Unmanned underwater vehicles (UUV), sometimes known as underwater drones, are any vehicles that are able to operate underwater without a human occupant. These vehicles may be divided into the two categories of remotely operated underwater vehicles (ROUVs), which are controlled by a remote human operator, and autonomous underwater vehicles (AUVs), which operate independently of direct human input. Sometimes only vehicles in the second category are considered a kind of robot, but those in the first category are also robots similar to surgical robots, which also mostly require an operator.

The GPS-aided GEO augmented navigation (GAGAN) is an implementation of a regional satellite-based augmentation system (SBAS) by the Government of India. It is a system to improve the accuracy of a GNSS receiver by providing reference signals. The AAI's efforts towards implementation of operational SBAS can be viewed as the first step towards introduction of modern Communication, navigation and surveillance/Air Traffic Management system over Indian airspace.

USBL is a method of underwater acoustic positioning. A complete USBL system consists of a transceiver, which is mounted on a pole under a ship, and a transponder or responder on the seafloor, on a towfish, or on an ROV. A computer, or "topside unit", is used to calculate a position from the ranges and bearings measured by the transceiver.

Intervention AUV or I-AUV is a type of autonomous underwater vehicle. Its characteristic feature is that it is capable of autonomous interventions on the subsea installations, a task usually carried out by remotely operated underwater vehicles (ROVs) or human divers.

An acoustic release is an oceanographic device for the deployment and subsequent recovery of instrumentation from the sea floor, in which the recovery is triggered remotely by an acoustic command signal.

An underwater acoustic positioning system is a system for the tracking and navigation of underwater vehicles or divers by means of acoustic distance and/or direction measurements, and subsequent position triangulation. Underwater acoustic positioning systems are commonly used in a wide variety of underwater work, including oil and gas exploration, ocean sciences, salvage operations, marine archaeology, law enforcement and military activities.

Short baseline acoustic positioning system A class of underwater acoustic positioning systems used to track underwater vehicles and divers

A short baseline (SBL) acoustic positioning system is one of three broad classes of underwater acoustic positioning systems that are used to track underwater vehicles and divers. The other two classes are ultra short baseline systems (USBL) and long baseline systems (LBL). Like USBL systems, SBL systems do not require any seafloor mounted transponders or equipment and are thus suitable for tracking underwater targets from boats or ships that are either anchored or under way. However, unlike USBL systems, which offer a fixed accuracy, SBL positioning accuracy improves with transducer spacing. Thus, where space permits, such as when operating from larger vessels or a dock, the SBL system can achieve a precision and position robustness that is similar to that of sea floor mounted LBL systems, making the system suitable for high-accuracy survey work. When operating from a smaller vessel where transducer spacing is limited, the SBL system will exhibit reduced precision.

GPS intelligent buoy (GIB) systems may be classified as inverted long-baseline (LBL) acoustic positioning devices where the transducers are installed on GPS-equipped sonobuoys that are either drifting or moored. GIBs may be used in conjunction with an active underwater device, or with a passive acoustic sound source. Typically the sound source or impact event is tracked or localized using a time of arrival (TOA) technique. Typically several GIBs are deployed over a given area of operation; with the total number determined by the size of the test area and the accuracy of the results desired. Different methods of GPS positioning may be used for positioning the array of GIBs, with accuracies of cm to meter level in realtime possible.

ABISMO is a remotely operated underwater vehicle (ROV) built by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) for exploration of the deep sea. It is the only remaining ROV rated to 11,000-meters, ABISMO is intended to be the permanent replacement for Kaikō, a ROV that was lost at sea in 2003.

The Sentry is an autonomous underwater vehicle (AUV) made by the Woods Hole Oceanographic Institution. Sentry is designed to descend to depths of 4,500 metres (14,800 ft) and to carry a range of devices for taking samples, pictures and readings from the deep sea.

Underwater searches are procedures to find a known or suspected target object or objects in a specified search area under water. They may be carried out underwater by divers, manned submersibles, remotely operated underwater vehicles, or autonomous underwater vehicles, or from the surface by other agents, including surface vessels, aircraft and cadaver dogs.

Theseus (AUV) Large autonomous underwater vehicle for laying fibre optic cable

Theseus is a large autonomous underwater vehicle (AUV) designed for laying fibre optic cable on the seafloor.

References

  1. Underwater Acoustic Positioning Systems, Chapter 4, P.H. Milne, 1983, ISBN   0-87201-012-0
  2. NOAA Diving Manual, Edition 4, Underwater Navigation, Section 10.2., ISBN   0-941332-70-5, ISBN   978-0-941332-70-5
  3. Handbook of Acoustics, Malcolm J. Crocker 1998, ISBN   0-471-25293-X, 9780471252931, page 462
  4. The ROV Manual, Robert D. Christ and Robert L. Wernli Sr, Section 4.2.8. Capabilities and Limitations of Acoustic Positioning, ISBN   978-0-7506-8148-3
  5. The ROV Manual, Section 4.2.6.4 Long Baseline (LBL)
  6. LBL Underwater Positioning, Hydro International Magazine, Jan/Feb 2008, Volume 12, Number 1
  7. Milne, Chapter 2
  8. The Universe Below, Page 77, William J. Broad & Dimitry Schidlovski 1998, ISBN   0-684-83852-4, ISBN   978-0-684-83852-6
  9. History of Russian Underwater Acoustics, page 722. Oleg A. Godin, David R. Palmer, 2008, ISBN   981-256-825-5, ISBN   978-981-256-825-0
  10. MX Missile Basing, pages 173-175, 1981, ISBN   1-4289-2450-7, ISBN   978-1-4289-2450-5