MIT Lincoln Laboratory

Last updated
MIT Lincoln Laboratory
Lincoln Lab icon.png
Established1951
Research typeAdvanced science/technology
Budget $1.01 billion
Director Eric D. Evans
Location Lexington, Massachusetts, United States
Campus Hanscom Air Force Base
Operating agency
Massachusetts Institute of Technology
Website www.ll.mit.edu

The MIT Lincoln Laboratory, located in Lexington, Massachusetts, is a United States Department of Defense federally funded research and development center chartered to apply advanced technology to problems of national security. Research and development activities focus on long-term technology development as well as rapid system prototyping and demonstration. Its core competencies are in sensors, integrated sensing, signal processing for information extraction, decision-making support, and communications. These efforts are aligned within ten mission areas. The laboratory also maintains several field sites around the world.

Contents

The laboratory transfers much of its advanced technology to government agencies, industry, and academia, and has launched more than 100 start-ups. [1]

History

Origins

At the urging of the United States Air Force, the Lincoln Laboratory was created in 1951 at the Massachusetts Institute of Technology (MIT) as part of an effort to improve the U.S. air defense system. [2] Primary advocates for the creation of the laboratory were veterans of the World War II-era MIT Radiation Laboratory including physicist and electrical engineer Ivan A. Getting, physicist Louis Ridenour, and physicist George E. Valley Jr. [2] [3]

The laboratory's inception was prompted by Valley's investigations into the U.S. air defences, culminating in the Air Defense Systems Engineering Committee's 1950 report that concluded the United States was unprepared for the threat of an air attack. Because of MIT's management of the Radiation Laboratory during World War II, the experience of some of its staff on the Air Defense Systems Engineering Committee, and its proven competence in advanced electronics, the Air Force suggested that MIT could provide the research needed to develop an air defense that could detect, identify, and ultimately intercept air threats. [4]

James R. Killian, the president of MIT, was not eager for MIT to become involved in air defense. He asked the United States Air Force if MIT could first conduct a study to evaluate the need for a new laboratory and to determine its scope. Killian's proposal was approved, and a study named Project Charles (for the Charles River that flows past MIT) was carried out between February and August 1951. The final Project Charles report stated that the United States needed an improved air defense system and unequivocally supported the formation of a laboratory at MIT dedicated to air defense problems.

This new undertaking was initially called Project Lincoln and the site chosen for the new laboratory was on the Laurence G. Hanscom Field (now Hanscom Air Force Base), where the Massachusetts towns of Bedford, Lexington and Lincoln meet. A Project Bedford (on antisubmarine warfare) and a Project Lexington (on nuclear propulsion of aircraft) were already in use, so Major General Putt, who was in charge of drafting the charter for the new laboratory, decided to name the project for the town of Lincoln. [5]

SAGE

The Semi-Automatic Ground Environment (SAGE) Air Defense System is the beginning of MIT Lincoln Laboratory's history of developing innovative technology. [6] The system was conceived to meet the challenge of providing air defense to the continental United States. SAGE was designed to collect, analyze, and finally relay data from a multitude of radars, all quickly enough that defense responses could be initiated, if needed. The key to this system was a computer that could perform reliably in real time.

MIT's Whirlwind computer, built in the 1940s, looked to be a possible candidate for the system. However, the Whirlwind was not reliable or fast enough for the processing needed for analyzing data coming in from dozens of, perhaps even 100, radars. Jay Wright Forrester, an MIT professor instrumental in the development of the Whirlwind, found the breakthrough to enable the computer to achieve outstanding reliability and doubled speed — the magnetic-core memory. The magnetic core memory revolutionized computing. Computers became machines that were not just large and fast calculators; their uses for varying applications grew. Industry followed this development closely, adopting the magnetic core memory that expanded the capabilities of computers.

The TX-0 computer, in essence, a transistorized version of Whirlwind, was built in 1955 and made operational in 1956. It was smaller and slightly faster than Whirlwind.

Whirlwind II was not completed, but the AN/FSQ-7 Combat Direction Central, based on elements of its design, became the command and control system for the SAGE air defense network [7] [8] and Lincoln Laboratory Division 6 participated in this development. [9]

Lincoln Laboratory quickly established a reputation for pioneering advanced electronics in air defense systems. Many of the technical developments that later evolved into improved systems for the airborne detection and tracking of aircraft and ground vehicles have formed the basis for current research.

Today

MIT Lincoln Laboratory logo LLMIT Corporate Logo.png
MIT Lincoln Laboratory logo

Since MIT Lincoln Laboratory's establishment, the scope of the problems has broadened from the initial emphasis on air defense to include programs in space surveillance, missile defense, surface surveillance and object identification, communications, cyber security, homeland protection, high-performance computing, air traffic control, and intelligence, surveillance, and reconnaissance (ISR). The core competencies of the laboratory are in sensors, information extraction (signal processing and embedded computing), communications, integrated sensing, and decision support, all supported by a strong advanced electronic technology activity. [10]

Lincoln Laboratory conducts research and development pertinent to national security on behalf of the military services, the Office of the Secretary of Defense, and other government agencies. Projects focus on the development and prototyping of new technologies and capabilities. Program activities extend from fundamental investigations, through simulation and analysis, to design and field testing of prototype systems. Emphasis is placed on transitioning technology [11] to industry.

The work of Lincoln Laboratory revolves around a comprehensive set of mission areas: [12]

Lincoln Laboratory also undertakes work for non-DoD agencies such as programs in space lasercom and space science as well as environmental monitoring for NASA and the National Oceanic and Atmospheric Administration.

The dissemination of information to the government, academia, and industry is a principal focus of Lincoln Laboratory's technical mission. Wide dissemination of technical information is achieved through annual technical workshops, [24] seminars, and courses [24] hosted at the laboratory. Toward the goal of knowledge sharing, the laboratory publishes the Lincoln Laboratory Journal, [25] which contains comprehensive articles on current major research and journalistic pieces highlighting novel projects. Other publications [26] include Tech Notes, brief descriptions of Laboratory capabilities and technical achievements; the Annual Report, which highlights technical accomplishments and ongoing corporate and community outreach initiatives; and an overview brochure, MIT Lincoln Laboratory: Technology in Support of National Security. [27] Current news about Laboratory technical milestones is featured on the laboratory's website. [28]

MIT Lincoln Laboratory maintains a strong relationship with the MIT campus. [29] Ongoing research collaborations, student internship programs, reciprocal seminar series, and cooperative community and educational outreach projects are just a few of the ways the laboratory and the campus share the talents, facilities, and resources of each other.

Staff and organization

Approximately 1,700 technical staff members work on research, prototype building, and field demonstrations. The technical staff come from a broad range of scientific and engineering fields, with electrical engineering, physics, computer science and mathematics being among the most prevalent. Two-thirds of the professional staff hold advanced degrees, and 60% of those degrees are at the doctoral level.

The technical work is organized into eight divisions: [30] Air, Missile, & Maritime Defense Technology, Homeland Protection and Air Traffic Control, Cyber Security and Information Sciences, Communication Systems, Engineering, Advanced Technology, Space Systems and Technology, and ISR and Tactical Systems.

Lincoln Laboratory supports its research and development work with an infrastructure of services from six departments: [31] Contracting Services, Facility Services, Financial Services, Information Services, Security Services, and Human Resources. Approximately 1300 people working in the service departments or as technical specialists support the research and development mission of the laboratory.

Lincoln Laboratory supports several community outreach programs. Programs that promote education in science, technology, engineering, and mathematics for students in grades kindergarten to high school are offered to the local community and are supported by volunteers from across the laboratory. [32] The Lincoln Laboratory community service program raises awareness of both local and national needs by organizing fund-raising and outreach events that support selected charitable organizations, medical research, and U.S. troops abroad. [33]

Field sites

Lincoln Space Surveillance Complex

Since 1995, the Lincoln Space Surveillance Complex in Westford, Massachusetts, has played a key role in space situational awareness and the laboratory's overall space surveillance mission. The site comprises three major radars – Millstone Deep-Space Tracking Radar (an L-band radar), Haystack Long-Range Imaging Radar (W-band and X-band), and the Haystack Auxiliary Radar (Ku-band). Lincoln Laboratory is also engaged in field work at sites in the continental U.S. and the Pacific region.

Reagan Test Site, Kwajalein Atoll, Marshall Islands

Lincoln Laboratory serves as the scientific advisor to the Reagan Test Site [34] at the U.S. Army Kwajalein Atoll installation located about 2500 miles WSW of Hawaii. The laboratory also supports upgrades to the command-and-control infrastructure of the range to include applications of real-time discrimination and decision aids developed as a result of research at the laboratory.

The Experimental Test Site at White Sands Missile Range

The Lincoln Laboratory Experimental Test Site (ETS; obs. code: 704) is an electro-optical test facility located on the grounds of the White Sands Missile Range in Socorro, New Mexico. The ETS is operated by the laboratory for the Air Force; its principal mission is the development, evaluation, and transfer of advanced electro-optical space surveillance technologies. The ETS has been a contributing sensor to the U.S. Air Force Space Command. A spin-off program for NASA, Lincoln Near-Earth Asteroid Research (LINEAR), [35] uses the ground-based electro-optical deep-space surveillance telescopes at White Sands to discover comets and asteroids, in particular near-Earth objects. A large percentage share of all known minor planets in the Solar System have been discovered through this program. As of 2020, the Minor Planet Center credits LINEAR with the discovery of 149,793 minor planets from 1997 to 2012. In terms of the total number of discoveries, LINEAR is the most successful asteroid survey program ever conducted. [36]

In 2013, NASA's lunar-orbiting Lunar Atmosphere and Dust Environment Explorer (LADEE) carried an optical communications terminal built by Lincoln Laboratory that communicated with a ground terminal at another site at the White Sands Missile Range. This system, the Lunar Laser Communication Demonstration (LLCD) transmitted data in both directions at the fastest speeds ever recorded for deep-space communication. The demonstration is now being followed by a number of optical systems that will allow much higher volumes of data transfer for both scientific discovery and human exploration. [37]

Directors

See also

Related Research Articles

<span class="mw-page-title-main">DARPA</span> Agency of the U.S. Department of Defense

The Defense Advanced Research Projects Agency (DARPA) is a research and development agency of the United States Department of Defense responsible for the development of emerging technologies for use by the military.

<span class="mw-page-title-main">Semi-Automatic Ground Environment</span> Historic US military computer network

The Semi-Automatic Ground Environment (SAGE) was a system of large computers and associated networking equipment that coordinated data from many radar sites and processed it to produce a single unified image of the airspace over a wide area. SAGE directed and controlled the NORAD response to a possible Soviet air attack, operating in this role from the late 1950s into the 1980s. Its enormous computers and huge displays remain a part of cold war lore, and after decommissioning were common props in movies such as Dr. Strangelove and Colossus, and on science fiction TV series such as The Time Tunnel.

<span class="mw-page-title-main">Whirlwind I</span> Vacuum tube computer developed by the MIT

Whirlwind I was a Cold War-era vacuum tube computer developed by the MIT Servomechanisms Laboratory for the U.S. Navy. Operational in 1951, it was among the first digital electronic computers that operated in real-time for output, and the first that was not simply an electronic replacement of older mechanical systems.

<span class="mw-page-title-main">Lincoln Near-Earth Asteroid Research</span> American astronomical survey for identifying and tracking near-Earth objects

The Lincoln Near-Earth Asteroid Research (LINEAR) project is a collaboration of the United States Air Force, NASA, and the Massachusetts Institute of Technology's Lincoln Laboratory for the systematic detection and tracking of near-Earth objects. LINEAR was responsible for the majority of asteroid discoveries from 1998 until it was overtaken by the Catalina Sky Survey in 2005. As of 15 September 2011, LINEAR had detected 231,082 new small Solar System bodies, of which at least 2,423 were near-Earth asteroids and 279 were comets. The instruments used by the LINEAR program are located at Lincoln Laboratory's Experimental Test Site (ETS) on the White Sands Missile Range (WSMR) near Socorro, New Mexico.

Draper Laboratory is an American non-profit research and development organization, headquartered in Cambridge, Massachusetts; its official name is The Charles Stark Draper Laboratory, Inc. The laboratory specializes in the design, development, and deployment of advanced technology solutions to problems in national security, space exploration, health care and energy.

<span class="mw-page-title-main">Air Force Research Laboratory</span> Scientific research organization for the US Air Force and US Space Force

The Air Force Research Laboratory (AFRL) is a scientific research and development detachment of the United States Air Force Materiel Command dedicated to leading the discovery, development, and integration of direct-energy based aerospace warfighting technologies, planning and executing the Air Force science and technology program, and providing warfighting capabilities to United States air, space, and cyberspace forces. It controls the entire Air Force science and technology research budget which was $2.4 billion in 2006.

<span class="mw-page-title-main">AN/FSQ-7 Combat Direction Central</span>

The AN/FSQ-7 Combat Direction Central, referred to as the Q7 for short, was a computerized air defence command and control system. It was used by the United States Air Force for ground-controlled interception as part of the Semi-Automatic Ground Environment network during the Cold War.

<span class="mw-page-title-main">Maui Space Surveillance Complex</span> Observatory in Hawaii

The Maui Space Surveillance Complex (MSSC) is a U.S. Space Force operating location for the 15th Space Surveillance Squadron and the Air Force Research Laboratory (AFRL) at Haleakala Observatory on Maui, Hawaii, with a twofold mission. First, it conducts the research and development mission on the Maui Space Surveillance System (MSSS) at the Maui Space Surveillance Complex (MSSC). Second, it oversees operation of the Maui High Performance Computing Center (MHPCC). AFRL's research and development mission on Maui was formally called Air Force Maui Optical Station (AMOS) and the Air Force Maui Optical and Supercomputing observatory; the use of the term AMOS has been widespread throughout the technical community for over thirty years and is still used today at many technical conferences. The main-belt asteroid 8721 AMOS is named after the project.

<span class="mw-page-title-main">United States Space Surveillance Network</span> SSA system

The United States Space Surveillance Network (SSN) detects, tracks, catalogs and identifies artificial objects orbiting Earth, e.g. active/inactive satellites, spent rocket bodies, or fragmentation debris. The system is the responsibility of United States Space Command and operated by the United States Space Force.

The Aerospace Corporation is an American nonprofit corporation that operates a federally funded research and development center (FFRDC) in El Segundo, California. The corporation provides technical guidance and advice on all aspects of space missions to military, civil, and commercial customers. As the FFRDC for national-security space, Aerospace works closely with organizations such as the United States Space Force (USSF) and the National Reconnaissance Office (NRO) to provide "objective technical analyses and assessments for space programs that serve the national interest". Although the USSF and NRO are the primary customers, Aerospace also performs work for civil agencies such as NASA and NOAA as well as international organizations and governments in the national interest.

<span class="mw-page-title-main">Applied Physics Laboratory</span> University-affiliated research center

The Johns Hopkins University Applied Physics Laboratory is a not-for-profit university-affiliated research center (UARC) in Howard County, Maryland. It is affiliated with Johns Hopkins University and employs 8,700 people as of 2024. APL is the nation's largest UARC.

Douglas Taylor "Doug" Ross was an American computer scientist pioneer, and chairman of SofTech, Inc. He is most famous for originating the term CAD for computer-aided design, and is considered to be the father of Automatically Programmed Tools (APT), a programming language to drive numerical control in manufacturing. His later work focused on a pseudophilosophy he developed and named Plex.

John William Marchetti was a radar pioneer who had an outstanding career combining government and industrial activities. He was born of immigrant parents in Boston, Massachusetts, and entered Columbia College and Columbia School of Engineering and Applied Science in 1925. In a six-year program combining liberal arts and engineering, he earned both A.B. and B.S. degrees, followed by the graduate E.E. degree in 1931. He was employed by New York Edison as a power engineer for several years, during which time he also participated in the U.S. Naval Reserve as an Ensign.

The Experimental Semi-Automatic Ground Environment (SAGE) Sector was a prototype Cold War Air Defense Sector for developing the Semi Automatic Ground Environment. The Lincoln Laboratory control center in a new building was at Lexington, Massachusetts.

<span class="mw-page-title-main">Missile Warning Center</span> Military unit

The Missile Warning Center (MWC) is a center that provides missile warning and defense for United States Space Command's Combined Force Space Component Command, incorporating both space-based and terrestrial sensors. The MWC is located at Cheyenne Mountain Space Force Station.

<span class="mw-page-title-main">Eglin AFB Site C-6</span> Transmitter/receiver building in Walton County, United States

Eglin AFB Site C-6 is a United States Space Force radar station which houses the AN/FPS-85 phased array radar, associated computer processing system(s), and radar control equipment. Commencing operations in 1969, the AN/FPS-85 was the first large phased array radar. The entire radar/computer system is located at a receiver/transmitter building and is supported by the site's power plant, fire station, 2 water wells, and other infrastructure for the system. As part of the US Space Force's Space Surveillance Network its mission is to detect and track spacecraft and other manmade objects in Earth orbit for the Combined Space Operations Center satellite catalogue. With a peak radiated power of 32 megawatts the Space Force claims it is the most powerful radar in the world, and can track a basketball-sized object up to 22,000 nautical miles (41,000 km) from Earth.

<span class="mw-page-title-main">Andrew Gerber</span>

Andrew Gerber is a retired Vice President at Raytheon Technologies.

C. Robert Wieser qualified from MIT as an electrical engineer and later became a developer of electrical and computing technology. He was especially and particularly noted for having contributed to the development of the Cape Cod Air Defense system and SAGE system.

David Randolph Brown was an American computer scientist. He was a member of the Massachusetts Institute of Technology leadership team that created Project Whirlwind, "one of the first large-scale, high-speed computers".

<span class="mw-page-title-main">Multifunction Phased Array Radar</span>

Multifunction Phased Array Radar (MPAR) was an experimental Doppler radar system that utilized phased array technology. MPAR could scan at angles as high as 60 degrees in elevation, and simultaneously track meteorological phenomena, biological flyers, non-cooperative aircraft, and air traffic. From 2003 through 2016, there was one operational MPAR within the mainland United States—a repurposed AN/SPY-1A radar set loaned to NOAA by the U.S. Navy. The MPAR was decommissioned and removed in 2016.

References

  1. MIT Lincoln Laboratory (May 2020). Facts 2020–2021 (PDF) (Report). Spin-off companies since 1951: 106.
  2. 1 2 Young, Ken; Schilling, Warner R. (2019). Super Bomb: Organizational Conflict and the Development of the Hydrogen Bomb. Ithaca, New York: Cornell University Press. p. 125. ISBN   978-1-5017-4516-4.
  3. "MIT Lincoln Laboratory: History: Lincoln Laboratory Origins".
  4. MIT Lincoln Laboratory: Technology in the National Interest, ed. Eva C. Freeman, Lexington, Mass.: MIT Lincoln Laboratory, 1995.
  5. "MIT Lincoln Laboratory: History: Lincoln Laboratory established". Ll.mit.edu. 1941-06-26. Archived from the original on 2016-12-04. Retrieved 2014-05-15.
  6. T.P. Hughes, Rescuing Prometheus: Four Monumental Projects That Changed the Modern World New York: Pantheon Books,1998, Chapter 2, pp. 15-67.
  7. In Your Defense (digitized movie). Western Electric. Archived from the original on 2021-12-21. Retrieved 2012-04-03. The System Development Corporation…in the design of massive computer programs … Burroughs…electronic equipment … Western Electric…assist the Air Force in coordinating and managing the entire effort…and design of buildings. …SAGE project office…Air Material CommandNOTE: The film identifies "Direction Center" versus "Data Center".minute 5:15
  8. Dyson, George (April 1997). Darwin Among the Machines: The Evolution of Global Intelligence (1 ed.). Basic Books. p.  179. ISBN   0-7382-0030-1.
  9. Division 6 Staff. Biweekly Report for 27 May 1955 (Memorandum) (Report). MIT Lincoln Laboratory.{{cite report}}: CS1 maint: numeric names: authors list (link)
  10. MIT Lincoln Laboratory (April 2020). 2019 Annual Report (PDF) (Report).
  11. "MIT Lincoln Laboratory: Tech Transfer". Ll.mit.edu. Retrieved 2014-05-15.
  12. "MIT Lincoln Laboratory: Mission Areas". Ll.mit.edu. Retrieved 2014-05-15.
  13. "ll.mit.edu". ll.mit.edu. Retrieved 2014-05-15.
  14. "MIT Lincoln Laboratory: Air & Missile Defense Technology". Ll.mit.edu. Retrieved 2014-05-15.
  15. "MIT Lincoln Laboratory: Communication Systems". Ll.mit.edu. Retrieved 2014-05-15.
  16. "MIT Lincoln Laboratory: Cyber Security and Information Sciences". Ll.mit.edu. Retrieved 2014-05-15.
  17. "MIT Lincoln Laboratory: ISR Systems and Technology". Ll.mit.edu. Retrieved 2014-05-15.
  18. "MIT Lincoln Laboratory: Advanced Electronics Technology". Ll.mit.edu. Retrieved 2014-05-15.
  19. "MIT Lincoln Laboratory: Tactical Systems". Ll.mit.edu. Retrieved 2014-05-15.
  20. "MIT Lincoln Laboratory: Homeland Protection". Ll.mit.edu. Retrieved 2014-05-15.
  21. "MIT Lincoln Laboratory: Air Traffic Control". Ll.mit.edu. Retrieved 2014-05-15.
  22. "MIT Lincoln Laboratory: Engineering". Ll.mit.edu. Retrieved 2014-05-15.
  23. "Biotechnology and Human Systems | MIT Lincoln Laboratory".
  24. 1 2 "MIT Lincoln Laboratory: Workshops/Education". Ll.mit.edu. Retrieved 2014-05-15.
  25. "MIT Lincoln Laboratory: Publications: Current Journal". Ll.mit.edu. Retrieved 2014-05-15.
  26. "MIT Lincoln Laboratory: Publications". Ll.mit.edu. Archived from the original on 2014-04-10. Retrieved 2014-05-15.
  27. "MIT Reports to the President, 2007–2008". Cambridge, Massachusetts: Massachusetts Institute of Technology. 2008.
  28. "MIT Lincoln Laboratory: News". Ll.mit.edu. Retrieved 2014-05-15.
  29. "MIT Lincoln Laboratory: MIT Interactions". Ll.mit.edu. Retrieved 2014-05-15.
  30. "MIT Lincoln Laboratory: Organization of Divisions". Ll.mit.edu. Retrieved 2014-05-15.
  31. "MIT Lincoln Laboratory: Service Departments". Ll.mit.edu. Retrieved 2015-04-08.
  32. "MIT Lincoln Laboratory: Educational Outreach". Ll.mit.edu. Retrieved 2014-05-15.
  33. "MIT Lincoln Laboratory: Community Service and Giving". Ll.mit.edu. Retrieved 2014-05-15.
  34. "smdc.army.mil". smdc.army.mil. Archived from the original on 2014-05-10. Retrieved 2014-05-15.
  35. "MIT Lincoln Laboratory: LINEAR". Ll.mit.edu. Archived from the original on 2017-07-24. Retrieved 2014-05-15.
  36. "Minor Planet Discoverers (by number)". Minor Planet Center. 15 June 2020. Retrieved 27 July 2020.
  37. "MIT's Lincoln Lab helps speed space communication". bostonglobe.com. 2013-12-09. Retrieved 2017-04-08.

42°27′32″N71°16′03″W / 42.4590°N 71.2674°W / 42.4590; -71.2674