Mobile source air pollution

Last updated
Cars are Major Sources of mobile air pollution Automobile exhaust gas.jpg
Cars are Major Sources of mobile air pollution

Mobile source air pollution includes any air pollution emitted by motor vehicles, airplanes, locomotives, and other engines and equipment that can be moved from one location to another. Many of these pollutants contribute to environmental degradation and have negative effects on human health. To prevent unnecessary damage to human health and the environment, environmental regulatory agencies such as the U.S. Environmental Protection Agency have established policies to minimize air pollution from mobile sources. Similar agencies exist at the state level. Due to the large number of mobile sources of air pollution, and their ability to move from one location to another, mobile sources are regulated differently from stationary sources, such as power plants. Instead of monitoring individual emitters, such as an individual vehicle, mobile sources are often regulated more broadly through design and fuel standards. Examples of this include corporate average fuel economy standards and laws that ban leaded gasoline in the United States. The increase in the number of motor vehicles driven in the U.S. has made efforts to limit mobile source pollution challenging. As a result, there have been a number of different regulatory instruments implemented to reach the desired emissions goals. [1]

Contents

Broad classification

Airplanes Produce Significant Levels of Pollution Emissions C-141 Starlifter contrail.jpg
Airplanes Produce Significant Levels of Pollution Emissions

There are a number of different mobile sources of air pollution, some contributing more to pollution than others. As mentioned previously, mobile sources are regulated differently from stationary sources due to the large number of sources and their ability to move from one location to another. Different mobile sources operate differently and generate different emission types and levels. The E.P.A. differentiates between mobile sources by classifying them as either on-road vehicles or non-road vehicles. [2] On-road vehicles and non-road vehicles are often subject to different regulations.

Road sources

Non-road sources

Major regulated mobile source pollutants

There are a number of different pollutants that are emitted by mobile sources. Some make up a large portion of the total air concentration for that particular pollutant while others do not make up as much of the total air concentration. [3]

Laws and regulatory standards

Regulatory lawYear of establishmentDescription
Air Pollution Control Act 1955
  • First federal air pollution legislation
  • Funded research for scope and sources of air pollution
Clean Air Act 1963
  • Authorized the development of a national program to address air pollution related environmental problems
  • Authorized research into techniques to minimize air pollution
Motor Vehicle Air Pollution Control Act 1965
  • The first federal legislation designed to control emissions from automobiles
  • Authorized the Department of Health, Education, and Welfare (subsequently separated into the Department of Education and the Department of Health and Human Services in 1979) to establish the first federally mandated light duty vehicle emission standards
  • The act required a 72% reduction in hydrocarbon emissions, a 56% reduction in carbon monoxide emissions, and a complete elimination of crankcase hydrocarbon emissions for all light duty vehicles produced after 1968, using a 1963 base year.
Air Quality Act1967
  • Authorized enforcement procedures for air pollution problems involving interstate transport of pollutants
  • Authorized expanded research activities
Clean Air Act Extension 1970
Clean Air Act Amendments 1977
  • Authorized provisions related to the Prevention of Significant Deterioration
  • Authorized provisions relating to areas which are non-attainment with respect to the National Ambient Air Quality Standards
Clean Air Act Amendments 1990

U.S. enforcement agencies

Federal agencies

  • Federal Aviation Administration: Practically all aviation emission sources are independently regulated through equipment specific regulations, standards and recommended practices, and operational guidelines, which are established by a variety of organizations. For example, on-road vehicles, which take passengers to and from the airport, meet stringent Federal tailpipe standards set by EPA. Stationary sources on the airport, like power boilers and refrigeration chillers, must meet independent state regulations. And FAA certification is required for essentially all aviation equipment and processes. For example there are more than 60 standards [10] that apply to aircraft engine design, materials of construction, durability, instrumentation and control, and safety, among others. These are in addition to the Fuel Venting and Exhaust Emission Requirements for Turbine Engine Powered Airplanes (FAR Part 34), which guide compliance with EPA’s aircraft exhaust emission standards. The International Civil Aviation Organization (ICAO) is a United Nations intergovernmental body responsible for worldwide planning, implementation, and coordination of civil aviation. ICAO sets emission standards for jet engines. These are the basis of FAA’s aircraft engine performance certification standards, established through EPA regulations. [11]
  • Federal Highway Administration: The FHWA, EPA, the Health Effects Institute, and others have funded and conducted research studies to try to more clearly define potential risks from mobile source air toxics emissions associated with highway projects. The FHWA policies and procedures for implementing NEPA is prescribed by regulation in 23 CFR § 771. [12]
  • National Highway Traffic Safety Administration: NHTSA administers the CAFE program, and the Environmental Protection Agency (EPA) provides the fuel economy data. NHTSA sets fuel economy standards for cars and light trucks sold in the U.S. while EPA calculates the average fuel economy for each manufacturer. [13]

State-level agencies

EPA has ten regional offices, each of which is responsible for the execution of programs within several states and territories. EPA's website provides a detailed list of state agencies which administer the environmental regulations at the state level. California is the only state which has its own regulatory agency, the California Air Resources Board (CARB). The other states are allowed to follow CARB or federal regulations.

Enforcement mechanisms and policy instruments

Federal, state, and local governments utilize a wide range of policy instruments to control pollution from mobile sources. On the federal level, many different agencies are responsible for regulating, or at least creating policies to limit, pollution from mobile sources. This is necessary given the broad range of objects that are considered “mobile sources,” from aircraft and off-road vehicles, to locomotives and on-road vehicles. The Federal Aviation Administration, for example, establishes standards to limit emissions from aircraft, whereas the U.S. Department of Transportation and Environmental Protection Agency administer various aspects of on-road vehicle fuel economy regulations. On the state level, mandatory vehicle emissions-testing programs are often required as part of the annual motor-vehicle registration process.

Labeling policies

Proposed CAFE Label (Model Year 2012 and Later) Fuel Economy Label A+.jpg
Proposed CAFE Label (Model Year 2012 and Later)
Proposed CAFE Label (Model Year 2012 and Later) Fuel Economy Label B.jpg
Proposed CAFE Label (Model Year 2012 and Later)

Many governments throughout the world require manufacturers of particular products to attach information-related labels to their products. Common examples in the United States include food nutrition and ingredient labels for food products, Surgeon General labels on alcohol and tobacco products, and labels for common household pesticides. Like mobile sources of air pollution, there is a broad range of products that may require government labeling regulation, therefore numerous federal agencies oversee various label-related regulation programs. For example, the US Food and Drug Administration oversees food nutrition and ingredient label regulations, whereas the US Environmental Protection Agency sets specific standards for the labeling of pesticides.

The primary goal of labeling regulations is to provide consumers and other product users with important information about the product. Essentially, labeling policies are designed to correct the market failure of imperfect information. For consumers to make the best decisions when allocating scarce resources, such as income, detailed information about particular products may be required. In this sense, labels also help correct information asymmetries that often exist within many market transactions.

In the United States, all new cars and light-duty trucks are required to have labels that display specific fuel economy information. [14] The US Environmental Protection Agency calculates the average fuel economy for each vehicle manufacturer, and provides the data to the National Highway Traffic Safety Administration (NHTSA), which administers and enforces the Corporate Average Fuel Economy (CAFE) program. [13] The purpose of the program is (1) to reduce emissions by requiring vehicle manufacturers to meet minimum fuel economy levels, and (2) to provide consumers with fuel economy information before purchasing new vehicles.

EPA and NHTSA are redesigning the labels to provide even more information to consumers. The new labels will, for the first time, provide information about each vehicle's greenhouse gas emissions, as required by the Energy Independence and Security Act of 2007. The agencies are proposing two different label designs and are seeking public comments about which labels will be most helpful to consumers. Consumers can submit comments about the two proposed label styles on EPA's website here [15] and here. [16]

Taxes

Another common policy instrument used by governments to influence market behavior is taxation. In the case of mobile source air pollution, the United States government has established many different taxes to limit emissions from various mobile sources. Perhaps one of the most well known is the gas guzzler tax, established by the Energy Tax Act of 1978. The act set minimum fuel economy standards for all new cars sold in the United States.

The tax is levied against manufacturers of new cars that fail to meet the minimum fuel economy level of 22.5 miles per gallon. The tax does not apply to minivans, sport utility vehicles, or pick-up trucks, as these made up a small portion of the US fleet when the tax was established in 1978. [17] Manufacturers pay a level of tax based upon the average fuel economy for each particular vehicle produced, ranging from $1,000 for vehicles achieving at least 21.5 but less than 22.5 MPG, to $7,000 for each vehicle achieving less than 12.5 MPG. Vehicles that achieve a minimum average fuel economy of 22.5 MPG are not subject to the gas guzzler tax.

Tax credits

Governments may also offer tax credits to encourage certain types of behavior within market economies. For example, if a government wants to encourage consumers to purchase more fuel-efficient vehicles, the government could offer tax credits to effectively lower the price of each vehicle. The logic of this approach is consistent with the laws of supply and demand, namely, that as the price of a good decreases, the quantity demanded of that good will increase. This is true given that other important factors, such as current levels of supply and demand, remain constant.

The US federal government currently utilizes numerous tax credits to reduce emissions from mobile sources. One of the more common tax credits is the "Qualified Plug-In Electric Drive Motor Vehicle Tax Credit." This credit is available "for the purchase of a new qualified plug-in electric drive motor vehicle that draws propulsion using a traction battery that has at least four kilowatt hours of capacity, uses an external source of energy to recharge the battery, has a gross vehicle weight rating of up to 14,000 pounds, and meets specified emission standards." [18] The credit ranges from $2,500 to $7,000, depending upon the vehicle's weight rating. Consumers who purchase the new Chevrolet Volt are eligible for the full $7,500 credit. [19] Another tax credit targeted at consumers is the "Fuel Cell Motor Vehicle Tax Credit," which was originally set at $8,000 for the purchase of qualified light-duty fuel cell vehicles. On December 31, 2009, the tax credit was reduced to $4,000. [20]

Tax credits to limit mobile source pollution can also be targeted at producers of particular products. For example, "Advanced Biofuel Production Payments" are available to "eligible producers of advanced biofuels," or for fuels derived from "renewable biomass other than corn kernel starch." [21] Such producers "may receive payments to support expanded production of advanced biofuels," dependent upon the "quantity and duration of production by the eligible producer; the net nonrenewable energy content of the advanced biofuel, if sufficient data is available; the number of producers participating in the program; and the amount of funds available." [21] While many critics have argued that biofuels can actually increase greenhouse gas emissions, research from the US Department of Energy indicates that biofuels "burn cleaner than gasoline, resulting in fewer greenhouse gas emissions, and are fully biodegradable, unlike some fuel additives." [22]

Voluntary programs

The US Department of Energy's "Clean Cities" program has saved more than 3 billion US gallons (11,000,000 m) of petroleum since its inception in 1993. Clean Cities DOE Petroleum Reduction.jpg
The US Department of Energy's "Clean Cities" program has saved more than 3 billion US gallons (11,000,000 m) of petroleum since its inception in 1993.

Other important policy instruments that can be utilized by governments are voluntary programs. These programs bring together various stakeholders with the goal of achieving some particular policy outcome. The Department of Energy, for example, created the "Clean Cities" program to reduce petroleum use in the transportation sector. The Clean Cities program partners with more than 80 volunteer organizations throughout the United States, developing public-private partnerships that promote alternative fuels and advanced vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction. [23] The three primary goals of the program are

  1. Replacement: Replace petroleum used in the transportation sector with alternative and renewable fuels,
  2. Reduction: Reduce petroleum use by promoting smarter driving practices, idle reduction, fuel-efficient vehicles, and advanced technologies, and
  3. Elimination: Eliminating petroleum use by encouraging greater use of mass transit systems, trip-elimination measures, and congestion mitigation.

The program was initiated in 1993 and has saved nearly 3 billion US gallons (11,000,000 m3) of petroleum since its inception. [24]

Another example of a voluntary program is the Environmental Protection Agency's "SmartWay Transport Partnership". This voluntary partnership between the EPA and the ground freight industry is designed to reduce greenhouse gases and air pollution through increased fuel efficiency programs. EPA provides partners with "benefits and services that include fleet management tools, technical support, information, public recognition, and use of the SmartWay Transport Partner logo." [25]

"Clean Construction USA" is an additional voluntary program administered by EPA that promotes the reduction of diesel exhaust emissions from construction equipment and other construction vehicles. The program encourages proper operations and maintenance, the use of emission-reducing technologies, and the use of cleaner fuels. [26]

Subsidies

Subsidies are another powerful policy tool used by governments to influence economic behavior. Subsidies can take many forms, ranging from tax credits to direct cash payments. To limit mobile source pollution from airports, for example, the Federal Aviation Administration's "Voluntary Airport Low Emission Program" provides funding to U.S. commercial service airports located in air quality non attainment and maintenance areas. While the funding can be used to reduce emissions from both mobile and stationary sources at the airport, much of the program's emphasis is on mobile source emission reduction. The program promotes the use of electric ground support equipment, such as electric bag tugs that take luggage from the airplane to the baggage claim. Other airport equipment that can be electronically operated include various types of belt loaders, along with the pushback tractors that assist airplanes when departing from the gate.

Another important goal of the program is to install underground fuel hydrants at airports. These would eliminate the need for fuel trucks, an important source of mobile emissions. The Voluntary Airport Low Emission Program was established under the Vision 100 Century of Aviation Reauthorization Act of 2003.

Command and control: performance standards

Numerous states have emissions-testing programs to limit pollution from on-road vehicles, such as cars and light-duty trucks. Each of these vehicles must meet specific emissions targets before being allowed to obtain or renew vehicle registrations. Many of these programs are administered on the local and county level. For example, the Clean Air Car Check is a vehicle emissions-testing program for all vehicles registered in Lake and Porter counties in Indiana. The two counties were designated as non-attainment areas for ozone levels in 1977 by the Environmental Protection Agency. By 1990, the two counties were reclassified as severe non-attainment areas, a designation which requires states to create State Implementation Plans to attain and maintain certain air pollution standards. Although the counties were again reclassified in 2010, this time as attainment areas, the two counties will maintain their vehicle inspection and maintenance program because it is a "key piece of Indiana's plan to prevent backsliding so that the area can remain in attainment." [27]

Corporate Average Fuel Efficiency standard

According to the Corporate Average Fuel Economy standard (CAFE) regulation, which was enacted in 1975, every seller of automobiles in the US had to achieve by 1985 a minimum sales-weighted average fuel efficiency of 27.5 miles per gallon (MPG). This standard had to be achieved for domestically produced and imported cars separately. Failure to meet the prescribed standard incurred a penalty of $5 per car per 1/10 of a gallon that the corporate average fuel economy fell below the standard. The first idea about the environmental impact of the CAFE regulation can be obtained by examining its effects on the average fuel efficiency of domestic and foreign firms; these effects are largest for the domestic production of US manufacturers, whose corporate average fuel efficiency would be lower by 1.2 MPG in the absence of CAFE standards. CAFE standards also lead to approximately 19 million US gallons (72,000 m3) fuel consumption savings per year. Contrary to the CAFE standards, gasoline taxes affect not only new but also used cars, so that there is no reason to expect any substitution towards less fuel efficient used cars when taxes are raised. Small tax increases are insufficient to induce fuel cost savings of the same order of magnitude as CAFE. [28]

Marketable allowances

Leaded gasoline

Lead was originally added to fuel as an additive to prevent engine knocking. In the 1970s, virtually all gasoline used in the United States contained lead with an average concentration of almost 2.4 grams per gallon. By the mid 1970s, the EPA began formulating plans to phase lead out of fuel for two main reasons. There was growing concern over lead's potential effects on human health, especially with respected hypertension and cognitive development in children. Additionally, the introduction of the catalytic converter in new automobiles manufactured after 1975 required an adjustment to the fuel standards. Catalytic converters were utilized in new automobiles to help meet the hydrocarbon, carbon monoxide, and nitrogen oxide emission standards mandated by the 1970 Clean Air Act. Unfortunately, the catalytic converters could only function properly with unleaded fuel.

In order to protect human health and ensure that catalytic converters were operating properly, the EPA required that the average lead content of all gasoline sold be reduced from 1.7 grams per gallon after January 1, 1975 to 0.5 grams per gallon by January 1, 1979. Eventually, the EPA lowered the average lead concentration standard goal to 0.1 gm/gal by January 1, 1986. The EPA defined "averages" in a way that allowed refiners who owned more than one refinery to average or "trade" among refineries to satisfy their lead limits each quarter. Taking note of the trading that was taking place, the EPA permitted refiners to bank credits for use until the end of 1987. EPA enforcement relied on reporting requirements and random testing of gasoline samples. [29]

The EPA has officially concluded its effort to phase out lead in fuel. As of 1996, manufacturers are no longer required to place "unleaded fuel only" labels on the dashboard and on or around the fuel filler inlet area of each new motor vehicle. Additionally, several record keeping and reporting requirements for gasoline refiners and importers have been lifted. [30] Critics have viewed the lead credit trading program as a successful implementation of a cap and trade system allowing for the gradual reduction of a pollutant. Lead credit trading as a percentage of lead use rose above 40 percent by 1987. An estimated 20 percent of refineries participated in trading early in the program, eventually rising to 60 percent of refineries. [31]

Benzene in gasoline

In 2007, the Mobile Source Air Toxics Rule was created to help limit the hazardous emissions generated as a result of fuel combustion in mobile sources. Benzene is one particular component of gasoline that is known to pose a hazard to human health. In 2007, benzene concentrations in gasoline averaged 1% by volume. The EPA mandated refiners and importers to begin producing gasoline with annual an average benzene content no greater than 0.62% beginning in 2011. The EPA has listed certain technologies that can be utilized in order to achieve the new standards, but refiners can petition the EPA to approve additional technologies.

Refiners and importers could earn credits by reducing benzene levels below 0.62% before 2011. These credits could be auctioned to other companies, essentially creating a marketable allowance approach for reducing benzene content in gasoline. The nationwide banking and trading system does nave some limitations. No individual refiner or importer could produce gasoline with benzene concentrations exceeding 1.3% by volume, even with credits. [32]

See also

Related Research Articles

The California Air Resources Board is an agency of the government of California that aims to reduce air pollution. Established in 1967 when then-governor Ronald Reagan signed the Mulford-Carrell Act, combining the Bureau of Air Sanitation and the Motor Vehicle Pollution Control Board, CARB is a department within the cabinet-level California Environmental Protection Agency.

Vehicle emissions control is the study of reducing the emissions produced by motor vehicles, especially internal combustion engines.

<span class="mw-page-title-main">Vehicle emission standard</span> Legal requirements governing air pollutants released into the atmosphere

Emission standards are the legal requirements governing air pollutants released into the atmosphere. Emission standards set quantitative limits on the permissible amount of specific air pollutants that may be released from specific sources over specific timeframes. They are generally designed to achieve air quality standards and to protect human life. Different regions and countries have different standards for vehicle emissions.

<span class="mw-page-title-main">Zero-emissions vehicle</span> Class of motor vehicle

A zero-emission vehicle, or ZEV, is a vehicle that does not emit exhaust gas or other pollutants from the onboard source of power. The California definition also adds that this includes under any and all possible operational modes and conditions. This is because under cold-start conditions for example, internal combustion engines tend to produce the maximum amount of pollutants. In a number of countries and states, transport is cited as the main source of greenhouse gases (GHG) and other pollutants. The desire to reduce this is thus politically strong.

<span class="mw-page-title-main">Exhaust gas</span> Gases emitted as a result of fuel reactions in combustion engines

Exhaust gas or flue gas is emitted as a result of the combustion of fuels such as natural gas, gasoline (petrol), diesel fuel, fuel oil, biodiesel blends, or coal. According to the type of engine, it is discharged into the atmosphere through an exhaust pipe, flue gas stack, or propelling nozzle. It often disperses downwind in a pattern called an exhaust plume.

<span class="mw-page-title-main">Green vehicle</span> Environmentally friendly vehicles

A green vehicle, clean vehicle, eco-friendly vehicle or environmentally friendly vehicle is a road motor vehicle that produces less harmful impacts to the environment than comparable conventional internal combustion engine vehicles running on gasoline or diesel, or one that uses certain alternative fuels. Presently, in some countries the term is used for any vehicle complying or surpassing the more stringent European emission standards, or California's zero-emissions vehicle standards, or the low-carbon fuel standards enacted in several countries.

<span class="mw-page-title-main">Fuel economy in automobiles</span> Distance traveled by a vehicle compared to volume of fuel consumed

The fuel economy of an automobile relates to the distance traveled by a vehicle and the amount of fuel consumed. Consumption can be expressed in terms of the volume of fuel to travel a distance, or the distance traveled per unit volume of fuel consumed. Since fuel consumption of vehicles is a significant factor in air pollution, and since the importation of motor fuel can be a large part of a nation's foreign trade, many countries impose requirements for fuel economy. Different methods are used to approximate the actual performance of the vehicle. The energy in fuel is required to overcome various losses encountered while propelling the vehicle, and in providing power to vehicle systems such as ignition or air conditioning. Various strategies can be employed to reduce losses at each of the conversions between the chemical energy in the fuel and the kinetic energy of the vehicle. Driver behavior can affect fuel economy; maneuvers such as sudden acceleration and heavy braking waste energy.

<span class="mw-page-title-main">Energy Independence and Security Act of 2007</span> United States law

The Energy Independence and Security Act of 2007, originally named the Clean Energy Act of 2007, is an Act of Congress concerning the energy policy of the United States. As part of the Democratic Party's 100-Hour Plan during the 110th Congress, it was introduced in the United States House of Representatives by Representative Nick Rahall of West Virginia, along with 198 cosponsors. Even though Rahall was 1 of only 4 Democrats to oppose the final bill, it passed in the House without amendment in January 2007. When the Act was introduced in the Senate in June 2007, it was combined with Senate Bill S. 1419: Renewable Fuels, Consumer Protection, and Energy Efficiency Act of 2007. This amended version passed the Senate on June 21, 2007. After further amendments and negotiation between the House and Senate, a revised bill passed both houses on December 18, 2007 and President Bush, a Republican, signed it into law on December 19, 2007, in response to his "Twenty in Ten" challenge to reduce gasoline consumption by 20% in 10 years.

A mobile emission reduction credit (MERC) is an emission reduction credit generated within the transportation sector. The term “mobile sources” refers to motor vehicles, engines, and equipment that move, or can be moved, from place to place. Mobile sources include vehicles that operate on roads and highways ("on-road" or "highway" vehicles), as well as nonroad vehicles, engines, and equipment. Examples of mobile sources are passenger cars, light trucks, large trucks, buses, motorcycles, earth-moving equipment, nonroad recreational vehicles (such as dirt bikes and snowmobiles), farm and construction equipment, cranes, lawn and garden power tools, marine engines, ships, railroad locomotives, and airplanes. In California, mobile sources account for about 60 percent of all ozone forming emissions and for over 90 percent of all carbon monoxide (CO) emissions from all sources.

<span class="mw-page-title-main">Greenhouse gas emissions by the United States</span> Climate changing gases from the North American country

The United States produced 5.2 billion metric tons of carbon dioxide equivalent greenhouse gas (GHG) emissions in 2020, the second largest in the world after greenhouse gas emissions by China and among the countries with the highest greenhouse gas emissions per person. In 2019 China is estimated to have emitted 27% of world GHG, followed by the United States with 11%, then India with 6.6%. In total the United States has emitted a quarter of world GHG, more than any other country. Annual emissions are over 15 tons per person and, amongst the top eight emitters, is the highest country by greenhouse gas emissions per person. However, the IEA estimates that the richest decile in the US emits over 55 tonnes of CO2 per capita each year. Because coal-fired power stations are gradually shutting down, in the 2010s emissions from electricity generation fell to second place behind transportation which is now the largest single source. In 2020, 27% of the GHG emissions of the United States were from transportation, 25% from electricity, 24% from industry, 13% from commercial and residential buildings and 11% from agriculture. In 2021, the electric power sector was the second largest source of U.S. greenhouse gas emissions, accounting for 25% of the U.S. total. These greenhouse gas emissions are contributing to climate change in the United States, as well as worldwide.

<span class="mw-page-title-main">Global Warming Pollution Reduction Act of 2007</span> Green industrial policy bill in the 110th Congress introduced by Bernie Sanders

The Global Warming Pollution Reduction Act of 2007 (S. 309) was a bill proposed to amend the 1963 Clean Air Act, a bill that aimed to reduce emissions of carbon dioxide (CO2). A U.S. Senator, Bernie Sanders (I-VT), introduced the resolution in the 110th United States Congress on January 16, 2007. The bill was referred to the Senate Committee on Environment and Public Works but was not enacted into law.

United States vehicle emission standards are set through a combination of legislative mandates enacted by Congress through Clean Air Act (CAA) amendments from 1970 onwards, and executive regulations managed nationally by the Environmental Protection Agency (EPA), and more recently along with the National Highway Traffic Safety Administration (NHTSA). These standard cover common motor vehicle air pollution, including carbon monoxide, nitrogen oxides, and particulate emissions, and newer versions have incorporated fuel economy standards.

Title 40 is a part of the United States Code of Federal Regulations. Title 40 arranges mainly environmental regulations that were promulgated by the US Environmental Protection Agency (EPA), based on the provisions of United States laws. Parts of the regulation may be updated annually on July 1.

<span class="mw-page-title-main">Clean Air Act (United States)</span> 1963 United States federal law to control air pollution

The Clean Air Act (CAA) is the United States' primary federal air quality law, intended to reduce and control air pollution nationwide. Initially enacted in 1963 and amended many times since, it is one of the United States' first and most influential modern environmental laws.

<span class="mw-page-title-main">Low-carbon fuel standard</span> Rule to reduce carbon intensity of transportation fuels

A low-carbon fuel standard (LCFS) is an emissions trading rule designed to reduce the average carbon intensity of transportation fuels in a given jurisdiction, as compared to conventional petroleum fuels, such as gasoline and diesel. The most common methods for reducing transportation carbon emissions are supplying electricity to electric vehicles, supplying hydrogen fuel to fuel cell vehicles and blending biofuels, such as ethanol, biodiesel, renewable diesel, and renewable natural gas into fossil fuels. The main purpose of a low-carbon fuel standard is to decrease carbon dioxide emissions associated with vehicles powered by various types of internal combustion engines while also considering the entire life cycle, in order to reduce the carbon footprint of transportation.

<span class="mw-page-title-main">Air quality law</span> Type of law

Air quality laws govern the emission of air pollutants into the atmosphere. A specialized subset of air quality laws regulate the quality of air inside buildings. Air quality laws are often designed specifically to protect human health by limiting or eliminating airborne pollutant concentrations. Other initiatives are designed to address broader ecological problems, such as limitations on chemicals that affect the ozone layer, and emissions trading programs to address acid rain or climate change. Regulatory efforts include identifying and categorising air pollutants, setting limits on acceptable emissions levels, and dictating necessary or appropriate mitigation technologies.

United States policy in regard to biofuels, such as ethanol fuel and biodiesel, began in the early 1990s as the government began looking more intensely at biofuels as a way to reduce dependence on foreign oil and increase the nation's overall sustainability. Since then, biofuel policies have been refined, focused on getting the most efficient fuels commercially available, creating fuels that can compete with petroleum-based fuels, and ensuring that the agricultural industry can support and sustain the use of biofuels.

The, United States Environmental Protection Agency (EPA) began regulating greenhouse gases (GHGs) under the Clean Air Act from mobile and stationary sources of air pollution for the first time on January 2, 2011. Standards for mobile sources have been established pursuant to Section 202 of the CAA, and GHGs from stationary sources are currently controlled under the authority of Part C of Title I of the Act. The basis for regulations was upheld in the United States Court of Appeals for the District of Columbia in June 2012.

Margo T. Oge is an American engineer and environmental regulator who served as the director of the Environmental Protection Agency's Office of Radiation and Indoor Air from 1990 to 1994 and director of the Office of Transportation and Air Quality from 1994 to 2012. Beginning in 2009, Oge lead the EPA team that authored the 2010-2016 and the 2017-2025 Light-Duty Vehicle Greenhouse Gas Emissions Standards. By 2025, these rules require automakers to halve the greenhouse gas emissions of cars and light duty trucks while doubling fuel economy. These rules were the US federal government's first regulatory actions to reduce greenhouse gases.

As the most populous state in the United States, California's climate policies influence both global climate change and federal climate policy. In line with the views of climate scientists, the state of California has progressively passed emission-reduction legislation.

References

  1. EPA - What are Mobile Sources? http://www.epa.gov/otaq/invntory/overview/examples.htm
  2. EPA - On-road Vehicles and Engines http://www.epa.gov/otaq/hwy.htm
  3. EPA - Mobile Source Emissions - Past, Present, and Future http://www.epa.gov/otaq/invntory/overview/results/allmobile.htm
  4. EPA - Carbon Monoxide http://www.epa.gov/oms/invntory/overview/pollutants/carbonmon.htm
  5. EPA - Emission Facts: Average Carbon Dioxide Emissions Resulting from Gasoline and Diesel Fuel http://www.epa.gov/oms/climate/420f05001.htm
  6. EPA - Nitrogen Oxides http://www.epa.gov/oms/invntory/overview/pollutants/nox.htm
  7. EPA - Hydrocarbons http://www.epa.gov/oms/invntory/overview/pollutants/hydrocarbons.htm
  8. EPA - Particulate Matter http://www.epa.gov/oms/invntory/overview/pollutants/pm.htm
  9. US EPA, OA (January 18, 2013). "About EPA". US EPA.
  10. "See FAR Part 33 – Airworthiness Standards: Aircraft Engines". Archived from the original on 2007-03-17. Retrieved 2019-07-23.
  11. "FAA policies" (PDF).
  12. "Interim Guidance on Mobile Source Air Toxic Analysis in NEPA documents - Policy And Guidance - Air Toxics - Air Quality - Environment - FHWA". www.fhwa.dot.gov.
  13. 1 2 "Corporate Average Fuel Economy". NHTSA. November 7, 2016.
  14. USA Environmental Protection Agency [ dead link ]
  15. "Fuel Economy Label 1 for Gas/Diesel Vehicle | Fuel Economy | US EPA". www.epa.gov. Archived from the original on 2010-09-01.
  16. "Fuel Economy Label 2 for Gas/Diesel Vehicle | Fuel Economy | US EPA". www.epa.gov. Archived from the original on 2010-09-01.
  17. "EPA webpage".
  18. "Alternative Fuels Data Center: Qualified Plug-In Electric Vehicle (PEV) Tax Credit". afdc.energy.gov.
  19. Block, Sandra (March 18, 2011). "USA Today".
  20. "Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit". afdc.energy.gov.
  21. 1 2 "Alternative Fuels Data Center: Advanced Biofuel Production Payments". afdc.energy.gov.
  22. "Biofuels: Myth vs. Fact (Department of Energy)" (PDF).
  23. "Alternative Fuels Data Center: Clean Cities Coalition Network". afdc.energy.gov.
  24. "NHTSA website".
  25. "Alternative Fuels Data Center: SmartWay Transport Partnership". afdc.energy.gov.
  26. "Alternative Fuels Data Center: Clean Construction". afdc.energy.gov.
  27. "Clean Air Car Check".
  28. Goldberg, Pinelopi Koujianou (March 1998). "The Effects of the Corporate Average Fuel Efficiency Standards in the US". The Journal of Industrial Economics. 46 (1): 1–33. doi:10.1111/1467-6451.00059. S2CID   152584179.
  29. EPA - Lead Credit Trading http://yosemite.epa.gov/ee/epa/eed.nsf/2602a2edfc22e38a8525766200639df0/df94392f72ebb26085257746000aff52!OpenDocument
  30. EPA - EPA Takes Final Step in Phaseout of Leaded Gasoline http://www.epa.gov/history/topics/lead/02.htm
  31. Hahn, Robert, and Gordon Hester. 1989. Where Did All the Markets GO? An Analysis of EPA’s Emissions Trading Program. Yale Journal on Regulation. Vol.6: 109-153.
  32. Federal Register Vol. 73, No. 201. Thursday, October 16, 2008. Rules and Regulations. P 61358-61363