NTSC-J

Last updated
Analog television encoding systems by nation; NTSC (green), SECAM (orange), and PAL (blue) PAL-NTSC-SECAM.svg
Analog television encoding systems by nation; NTSC (green), SECAM (orange), and PAL (blue)

NTSC-J or "System J" is the informal designation for the analogue television standard used in Japan. The system is based on the US NTSC (NTSC-M) standard with minor differences. [1] While NTSC-M is an official CCIR [2] [3] [4] and FCC [5] [6] [7] standard, NTSC-J or "System J" are a colloquial indicators.

Contents

The system was introduced by NHK and NTV, with regular color broadcasts starting on September 10, 1960. [8] [9]

NTSC-J was replaced by digital broadcasts in 44 of the country's 47 prefectures on 24 July 2011. Analogue broadcasting ended on 31 March 2012 in the three prefectures devastated by the 2011 Tōhoku earthquake and tsunami (Iwate, Miyagi, Fukushima) and the subsequent Fukushima Daiichi nuclear disaster.

The term NTSC-J is also incorrectly and informally used to distinguish regions in console video games, which use televisions (see Marketing definition below).

Technical definition

A list of analog television systems worldwide; "System J" of NTSC is designated in dark red Analog-TV-Systems.jpg
A list of analog television systems worldwide; "System J" of NTSC is designated in dark red

Japan implemented the NTSC standard with slight differences. The black and blanking levels of the NTSC-J signal are identical to each other [10] (both at 0 IRE, similar to the PAL video standard), while in American NTSC the black level is slightly higher (7.5 IRE) than blanking level - because of the way this appears in the waveform, the higher black level is also called pedestal. This small difference doesn't cause any incompatibility problems, but needs to be compensated by a slight change of the TV brightness setting in order to achieve proper images.

YIQ color encoding in NTSC-J uses slightly different equations and ranges from regular NTSC. has a range of 0 to +-334 (+-309 on NTSC-M), and has a range of 0 to +-293 (+-271 on NTSC-M). [11]

YCbCr equations for NTSC-J are , while on NTSC-M we have . [11]

NTSC-J also uses a white reference (color temperature) of 9300K instead of the usual NTSC standard of 6500K. [12] [13] [14]

The over-the-air RF frequencies used in Japan do not match those of the US NTSC standard. On VHF the frequency spacing for each channel is 6 MHz as in North America, South America, Caribbean, South Korea, Taiwan, Burma (Myanmar) the Philippines, except between channels 7 and 8 (which overlap). Channels 1 through 3 are reallocated for the expansion of the Japanese FM band. On UHF frequency spacing for each channel in Japan is the same, but the channel numbers are 1 lower than on the other areas mentioned - for example, channel 13 in Japan is on the same frequency as channel 14. For more information see Television channel frequencies. Channels 13-62 are used for analog and digital TV broadcasting.

The encoding of the stereo subcarrier also differs between NTSC-M/MTS and Japanese EIAJ MTS broadcasts. [15]

Marketing definition

The term NTSC-J was informally used to distinguish regions in console video games, which use televisions. NTSC-J is used as the name of the video gaming region of Japan (hence the "J"), South East Asia (some countries only), Taiwan, Hong Kong, Macau, Philippines and South Korea (now NTSC-K) (formerly part of SE Asia with Hong Kong, Taiwan, Japan, etc.). [16] [17]

Most games designated as part of this region will not run on hardware designated as part of the NTSC-U, PAL (or PAL-E, "E" stands for Europe) or NTSC-C (for China) mostly due to the regional differences of the PAL (SECAM was also used in the early 1990s) and NTSC standards. [18] [19] [20] [17] Many older video game systems do not allow games from different regions to be played (accomplished by various forms of regional lockout); however more modern consoles either leave protection to the discretion of publishers, such as Microsoft's Xbox 360, or discontinue its use entirely, like Sony's PlayStation 3 (with a few exceptions).

China received its own designation due to fears of an influx of illegal copies flooding out of China, which is notorious for its rampant copyright infringements. There is also concern of copyright protection through regional lockout built into the video game systems and games themselves, as the same product can be edited by different publishers from one continent to another.

See also

Broadcast television systems
Related topics

Related Research Articles

<span class="mw-page-title-main">Frequency modulation synthesis</span> Form of sound synthesis

Frequency modulation synthesis is a form of sound synthesis whereby the frequency of a waveform is changed by modulating its frequency with a modulator. The (instantaneous) frequency of an oscillator is altered in accordance with the amplitude of a modulating signal.

In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x:

<span class="mw-page-title-main">NTSC</span> Analog television system

NTSC is the first American standard for analog television, published in 1941. In 1961, it was assigned the designation System M. It is also known as EIA standard 170.

<span class="mw-page-title-main">PAL</span> Colour encoding system for analogue television

Phase Alternating Line (PAL) is a colour encoding system for analog television. It was one of three major analogue colour television standards, the others being NTSC and SECAM. In most countries it was broadcast at 625 lines, 50 fields per second, and associated with CCIR analogue broadcast television systems B, D, G, H, I or K. The articles on analog broadcast television systems further describe frame rates, image resolution, and audio modulation.

<span class="mw-page-title-main">Simple harmonic motion</span> To-and-fro periodic motion in science and engineering

In mechanics and physics, simple harmonic motion is a special type of periodic motion an object experiences due to a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position. It results in an oscillation that is described by a sinusoid which continues indefinitely.

<span class="mw-page-title-main">SECAM</span> French analog color television system

SECAM, also written SÉCAM, is an analog color television system that was used in France, Russia and some other countries or territories of Europe and Africa. It was one of three major analog color television standards, the others being PAL and NTSC. Like PAL, a SECAM picture is also made up of 625 interlaced lines and is displayed at a rate of 25 frames per second. However, due to the way SECAM processes color information, it is not compatible with the German PAL video format standard. This page primarily discusses the SECAM colour encoding system. The articles on broadcast television systems and analog television further describe frame rates, image resolution, and audio modulation. SECAM video is composite video because the luminance and chrominance are transmitted together as one signal.

<span class="mw-page-title-main">Baseband</span> Range of frequencies occupied by an unmodulated signal

In telecommunications and signal processing, baseband is the range of frequencies occupied by a signal that has not been modulated to higher frequencies. Baseband signals typically originate from transducers, converting some other variable into an electrical signal. For example, the electronic output of a microphone is a baseband signal that is analogous to the applied voice audio. In conventional analog radio broadcasting, the baseband audio signal is used to modulate an RF carrier signal of a much higher frequency.

<span class="mw-page-title-main">Heterodyne</span> Signal processing technique

A heterodyne is a signal frequency that is created by combining or mixing two other frequencies using a signal processing technique called heterodyning, which was invented by Canadian inventor-engineer Reginald Fessenden. Heterodyning is used to shift signals from one frequency range into another, and is also involved in the processes of modulation and demodulation. The two input frequencies are combined in a nonlinear signal-processing device such as a vacuum tube, transistor, or diode, usually called a mixer.

Multichannel Television Sound (MTS) is the method of encoding three additional audio channels into analog 4.5 MHz audio carriers on System M and System N. It was developed by the Broadcast Television Systems Committee, an industry group, and sometimes known as BTSC as a result.

<span class="mw-page-title-main">YIQ</span> Color space

YIQ is the color space used by the analog NTSC color TV system. The name Color Space stands for the following aliases suite or set & pool of reduced number of different colors selected thoroughly for sustaining quality of image above basic need & - simultaneously - for distributing limited spectre economical way. I stands for in-phase, while Q stands for quadrature, referring to the components used in quadrature amplitude modulation. Other TV systems used different color spaces, such as YUV for PAL or YDbDr for SECAM. Later digital standards use the YCbCr color space. These color spaces are all broadly related, and work based on the principle of adding a color component named chrominance, to a black and white image named luma.

<span class="mw-page-title-main">Butterworth filter</span> Type of signal processing filter

The Butterworth filter is a type of signal processing filter designed to have a frequency response that is as flat as possible in the passband. It is also referred to as a maximally flat magnitude filter. It was first described in 1930 by the British engineer and physicist Stephen Butterworth in his paper entitled "On the Theory of Filter Amplifiers".

<span class="mw-page-title-main">LC circuit</span> Electrical "resonator" circuit, consisting of inductive and capacitive elements with no resistance

An LC circuit, also called a resonant circuit, tank circuit, or tuned circuit, is an electric circuit consisting of an inductor, represented by the letter L, and a capacitor, represented by the letter C, connected together. The circuit can act as an electrical resonator, an electrical analogue of a tuning fork, storing energy oscillating at the circuit's resonant frequency.

<span class="mw-page-title-main">Comb filter</span> Signal processing filter

In signal processing, a comb filter is a filter implemented by adding a delayed version of a signal to itself, causing constructive and destructive interference. The frequency response of a comb filter consists of a series of regularly spaced notches in between regularly spaced peaks giving the appearance of a comb.

<span class="mw-page-title-main">Ion trap</span> Device for trapping charged particles

An ion trap is a combination of electric and/or magnetic fields used to capture charged particles — known as ions — often in a system isolated from an external environment. Atomic and molecular ion traps have a number of applications in physics and chemistry such as precision mass spectrometry, improved atomic frequency standards, and quantum computing. In comparison to neutral atom traps, ion traps have deeper trapping potentials that do not depend on the internal electronic structure of a trapped ion. This makes ion traps more suitable for the study of light interactions with single atomic systems. The two most popular types of ion traps are the Penning trap, which forms a potential via a combination of static electric and magnetic fields, and the Paul trap which forms a potential via a combination of static and oscillating electric fields.

<span class="mw-page-title-main">Duffing equation</span> Non-linear second order differential equation and its attractor

The Duffing equation, named after Georg Duffing (1861–1944), is a non-linear second-order differential equation used to model certain damped and driven oscillators. The equation is given by

MUSE, commercially known as Hi-Vision was a Japanese analog high-definition television system, with design efforts going back to 1979.

Differential gain is a kind of linearity distortion that affects the amplification and transmission of analog signals. It can visibly affect color saturation in analog TV broadcasting.

Differential phase is a kind of linearity distortion which affects the color hue in TV broadcasting.

The color killer is an electronic stage in color TV receiver sets which acts as a cutting circuit to cut off color processing when the TV set receives a monochrome signal.

<span class="mw-page-title-main">CCIR System N</span> 625-line analog television transmission format

CCIR System N is an analog broadcast television system introduced in 1951 and adopted by Argentina, Paraguay and Uruguay, paired with the PAL color system (PAL-N) since 1980. It was also used briefly in Brazil and Venezuela.

References

  1. Parekh, Ranjan (July 1, 2013). Principles of Multimedia. Tata McGraw-Hill Education. ISBN   9781259006500 via Google Books.
  2. Korea Electronics Association (1991). Journal of Korean Electronics (PDF).
  3. Alonso, Rodney Martínez; Pupo, Ernesto Fontes; Pan, Changyong (June 10, 2015). "Co-channel and adjacent channel interference in DTMB with 6MHz channel bandwidth". pp. 1–5. doi:10.1109/BMSB.2015.7177274. ISBN   978-1-4799-5865-8. S2CID   11038252 via IEEE Xplore.
  4. "C.C.I.R - Documents of the Xlth Plenary Assembly Oslo, 1966" (PDF).
  5. National Television System Committee (1951–1953), Report and Reports of Panel No. 11, 11-A, 12–19, with Some supplementary references cited in the Reports, and the Petition for adoption of transmission standards for color television before the Federal Communications Commission, n.p., 1953], 17 v. illus., diagrs., tables. 28 cm. LC Control No.:54021386 Library of Congress Online Catalog
  6. Herbert, Stephen (June 21, 2004). A History of Early Television. Taylor & Francis. ISBN   9780415326681 via Google Books.
  7. Meadow, Charles T. (February 11, 2002). Making Connections: Communication through the Ages. Scarecrow Press. ISBN   9781461706915 via Google Books.
  8. "1960-1961 : Begins Mass Production of Color TVs | Sharp Corporation | Sharp Global". global.sharp. Retrieved 2023-01-11.
  9. Manners, David (2021-06-08). "Japan Starts Colour TV Broadcasts". Electronics Weekly. Retrieved 2023-01-11.
  10. Poynton, Charles (January 3, 2003). Digital Video and HD: Algorithms and Interfaces. Elsevier. ISBN   9780080504308 via Google Books.
  11. 1 2 Jack, Keith (September 21, 2004). Video Demystified. Elsevier. ISBN   9780080481623 via Google Books.
  12. Poynton, Charles (2003). Digital video and HDTV : algorithms and interfaces. San Francisco, CA: Morgan Kaufmann Publishers. p. 643. ISBN   9781558607927. ...it is standard for reference white to correspond to light having the spectral and/or colorimetric properties of CIE Illuminant D65 (except in Japan, where the standard white reference is 9300 K).
  13. "Recommendation BT.470-6: Conventional Television Systems" (PDF). International Telecommunication Union. ITU. 30 November 1998. p. 16. Retrieved 5 November 2016. In Japan, the chromaticity of studio monitors is adjusted to a D-white at 9 300 K.
  14. "Guideline for Colorimetry for 1125/60 HDTV Production System" (PDF). Association of Radio Industries and Businesses (in Japanese). Association of Radio Industries and Businesses. 21 July 1998. p. 4. Archived from the original (PDF) on 13 April 2013. Retrieved 5 November 2016. "D93: D93は9,305 K色温度であり、日本におけるモニタの基準白色として使用されている。" [D93 represents a color temperature of 9,305 K, and it is the white reference used for monitors in Japan.]
  15. Numaguchi, Yasutaka (December 1979). "Present Status of Multichannel-Sound Television Broadcasting in Japan". IEEE Transactions on Broadcasting. BC-25 (4): 128–136. doi:10.1109/TBC.1979.266340. S2CID   19830970.
  16. "PlayStation DataCenter - NTSC-J List". psxdatacenter.com. Retrieved 2023-03-31.
  17. 1 2 "NTSC-J And NTSC-U PSone Classics Confirmed For SCEE". PlayStation.Blog. 2011-08-01. Retrieved 2023-03-31.
  18. "PlayStation DataCenter - NTSC-U List". psxdatacenter.com. Retrieved 2023-03-31.
  19. "PlayStation DataCenter - PAL List". psxdatacenter.com. Retrieved 2023-03-31.
  20. "Sony PlayStation 2 (NTSC-U/C) | Game Metadata and Citation Project Controlled Vocabularies". gamemetadata.soe.ucsc.edu. Retrieved 2023-03-31.