Noise, vibration, and harshness

Last updated

Noise, vibration, and harshness (NVH), also known as noise and vibration (N&V), is the study and modification of the noise and vibration characteristics of vehicles, particularly cars and trucks. While noise and vibration can be readily measured, harshness is a subjective quality, and is measured either via jury evaluations, or with analytical tools that can provide results reflecting human subjective impressions. The latter tools belong to the field psychoacoustics.

Contents

Interior NVH deals with noise and vibration experienced by the occupants of the cabin, while exterior NVH is largely concerned with the noise radiated by the vehicle, and includes drive-by noise testing.

NVH is mostly engineering, but often objective measurements fail to predict or correlate well with the subjective impression on human observers. For example, although the ear's response at moderate noise levels is approximated by A-weighting, two different noises with the same A-weighted level are not necessarily equally disturbing. The field of psychoacoustics is partly concerned with this correlation.

In some cases, the NVH engineer is asked to change the sound quality, by adding or subtracting particular harmonics, rather than making the vehicle quieter.

Noise, vibration, and harshness for vehicles can be distinguished easily by quantifying the frequency. Vibration is between 0.5 Hz and 50 Hz, noise is between 20 Hz and 5000 Hz, and harshness takes the coupling of noise and vibration.

Sources of NVH

The sources of noise in a vehicle can be classified as:

Many problems are generated as either vibration or noise, transmitted via a variety of paths, and then radiated acoustically into the cabin. [1] These are classified as "structure-borne" noise. Others are generated acoustically and propagated by airborne paths. Structure-borne noise is attenuated by isolation, while airborne noise is reduced by absorption or through the use of barrier materials. Vibrations are sensed at the steering wheel, the seat, armrests, or the floor and pedals. Some problems are sensed visually, such as the vibration of the rear-view mirror or header rail on open-topped cars.

Tonal versus broadband

NVH can be tonal such as engine noise, or broadband, such as road noise or wind noise, normally. Some resonant systems respond at characteristic frequencies, but in response to random excitation. Therefore, although they look like tonal problems on any one spectrum, their amplitude varies considerably. Other problems are self-resonant, such as whistles from antennas.

Tonal noises often have harmonics. Below is the noise spectrum of Michael Schumacher's Ferrari at 16680 rpm, showing the various harmonics. The x-axis is given in terms of multiples of engine speed. The y-axis is logarithmic, and uncalibrated.

Singleorder.jpg

Instrumentation

Typical instrumentation used to measure NVH include microphones, accelerometers, and force gauges or load cells. Many NVH facilities have semi-anechoic chambers, and rolling road dynamometers. Typically, signals are recorded directly to the hard drive via an analog-to-digital converter. In the past, magnetic or DAT tape recorders were used. The integrity of the signal chain is very important, typically each of the instruments used are fully calibrated in a laboratory once per year, and any given setup is calibrated as a whole once per day.

Laser scanning vibrometry is an essential tool for effective NVH optimization. The vibrational characteristics of a sample is acquired full-field under operational or excited conditions. The results represent the actual vibrations. No added mass is influencing the measurement, as the sensor is light itself.

Investigative techniques

Techniques used to help identify NVH include part substitution, modal analysis, rig squeak and rattle tests (complete vehicle or component/system tests), lead cladding, acoustic intensity, transfer path analysis, and partial coherence. Most NVH work is done in the frequency domain, using fast Fourier transforms to convert the time domain signals into the frequency domain. Wavelet analysis, order analysis, statistical energy analysis, and subjective evaluation of signals modified in real time are also used.

Computer-based modeling

NVH analysis needs good representative prototypes of the production vehicle for testing. These are needed early in the design process as the solutions often need substantial modification to the design, forcing in engineering changes which are much less expensive when made early. These early prototypes are very expensive, so there has been great interest in computer aided predictive techniques for NVH.

One example is the modeling works for structure borne noise and vibration analysis. When the phenomenon being considered occurs below, for example, 25–30 Hz, the idle shaking of the powertrain, a multi-body model can be used. In contrast, when the phenomenon being considered occurs at relatively high frequency – for example, above 1 kHz – a statistical energy analysis (SEA) model may be a better approach.

For the mid-frequency band, various methodologies exist, such as vibro-acoustic finite element analysis, and boundary element analysis. The structure can be coupled to the interior cavity and form a fully coupled equation system. Also, other techniques exist that can mix measured data with finite element or boundary element data.

Typical solutions

There are three principal means of improving NVH:

Deciding which of these (or what combination) to use in solving a particular problem is one of the challenges facing the NVH engineer.

Specific methods for improving NVH include the use of tuned mass dampers, subframes, balancing, modifying the stiffness or mass of structures, retuning exhausts and intakes, modifying the characteristics of elastomeric isolators, adding sound deadening or absorbing materials, and using active noise control. In some circumstances, substantial changes in vehicle architecture may be the only way to cure some problems cost-effectively.

Not-for-profit organizations such as the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) and Vibration Isolation and Seismic Control Manufacturers Association (VISCMA) provide specifications, standards, and requirements that cover a wide array of industries including electrical, mechanical, plumbing, and HVAC.

See also

Related Research Articles

<span class="mw-page-title-main">Acoustics</span> Branch of physics involving mechanical waves

Acoustics is a branch of physics that deals with the study of mechanical waves in gases, liquids, and solids including topics such as vibration, sound, ultrasound and infrasound. A scientist who works in the field of acoustics is an acoustician while someone working in the field of acoustics technology may be called an acoustical engineer. The application of acoustics is present in almost all aspects of modern society with the most obvious being the audio and noise control industries.

<span class="mw-page-title-main">Timbre</span> Quality of a musical note or sound or tone

In music, timbre, also known as tone color or tone quality, is the perceived sound quality of a musical note, sound or tone. Timbre distinguishes different types of sound production, such as choir voices and musical instruments. It also enables listeners to distinguish different instruments in the same category.

<span class="mw-page-title-main">Pitch (music)</span> Perceptual property in music ordering sounds from low to high

Pitch is a perceptual property of sounds that allows their ordering on a frequency-related scale, or more commonly, pitch is the quality that makes it possible to judge sounds as "higher" and "lower" in the sense associated with musical melodies. Pitch is a major auditory attribute of musical tones, along with duration, loudness, and timbre.

<span class="mw-page-title-main">Acoustical engineering</span> Branch of engineering dealing with sound and vibration

Acoustical engineering is the branch of engineering dealing with sound and vibration. It includes the application of acoustics, the science of sound and vibration, in technology. Acoustical engineers are typically concerned with the design, analysis and control of sound.

<span class="mw-page-title-main">Audio system measurements</span> Means of quantifying system performance

Audio system measurements are a means of quantifying system performance. These measurements are made for several purposes. Designers take measurements so that they can specify the performance of a piece of equipment. Maintenance engineers make them to ensure equipment is still working to specification, or to ensure that the cumulative defects of an audio path are within limits considered acceptable. Audio system measurements often accommodate psychoacoustic principles to measure the system in a way that relates to human hearing.

<span class="mw-page-title-main">Spectrum analyzer</span> Electronic testing device

A spectrum analyzer measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure the power of the spectrum of known and unknown signals. The input signal that most common spectrum analyzers measure is electrical; however, spectral compositions of other signals, such as acoustic pressure waves and optical light waves, can be considered through the use of an appropriate transducer. Spectrum analyzers for other types of signals also exist, such as optical spectrum analyzers which use direct optical techniques such as a monochromator to make measurements.

Automotive engineering, along with aerospace engineering and naval architecture, is a branch of vehicle engineering, incorporating elements of mechanical, electrical, electronic, software, and safety engineering as applied to the design, manufacture and operation of motorcycles, automobiles, and trucks and their respective engineering subsystems. It also includes modification of vehicles. Manufacturing domain deals with the creation and assembling the whole parts of automobiles is also included in it. The automotive engineering field is research intensive and involves direct application of mathematical models and formulas. The study of automotive engineering is to design, develop, fabricate, and test vehicles or vehicle components from the concept stage to production stage. Production, development, and manufacturing are the three major functions in this field.

<span class="mw-page-title-main">Equal-loudness contour</span> Frequency characteristics of hearing and perceived volume

An equal-loudness contour is a measure of sound pressure level, over the frequency spectrum, for which a listener perceives a constant loudness when presented with pure steady tones. The unit of measurement for loudness levels is the phon and is arrived at by reference to equal-loudness contours. By definition, two sine waves of differing frequencies are said to have equal-loudness level measured in phons if they are perceived as equally loud by the average young person without significant hearing impairment.

Condition monitoring is the process of monitoring a parameter of condition in machinery, in order to identify a significant change which is indicative of a developing fault. It is a major component of predictive maintenance. The use of condition monitoring allows maintenance to be scheduled, or other actions to be taken to prevent consequential damages and avoid its consequences. Condition monitoring has a unique benefit in that conditions that would shorten normal lifespan can be addressed before they develop into a major failure. Condition monitoring techniques are normally used on rotating equipment, auxiliary systems and other machinery like belt-driven equipment,, while periodic inspection using non-destructive testing (NDT) techniques and fit for service (FFS) evaluation are used for static plant equipment such as steam boilers, piping and heat exchangers.

Vibration isolation is the prevention of transmission of vibration from one component of a system to others parts of the same system, as in buildings or mechanical systems. Vibration is undesirable in many domains, primarily engineered systems and habitable spaces, and methods have been developed to prevent the transfer of vibration to such systems. Vibrations propagate via mechanical waves and certain mechanical linkages conduct vibrations more efficiently than others. Passive vibration isolation makes use of materials and mechanical linkages that absorb and damp these mechanical waves. Active vibration isolation involves sensors and actuators that produce disruptive interference that cancels-out incoming vibration.

<span class="mw-page-title-main">Sound</span> Vibration that travels via pressure waves in matter

In physics, sound is a vibration that propagates as an acoustic wave through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the reception of such waves and their perception by the brain. Only acoustic waves that have frequencies lying between about 20 Hz and 20 kHz, the audio frequency range, elicit an auditory percept in humans. In air at atmospheric pressure, these represent sound waves with wavelengths of 17 meters (56 ft) to 1.7 centimeters (0.67 in). Sound waves above 20 kHz are known as ultrasound and are not audible to humans. Sound waves below 20 Hz are known as infrasound. Different animal species have varying hearing ranges.

<span class="mw-page-title-main">Vibration</span> Mechanical oscillations about an equilibrium point

Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Vibration may be deterministic if the oscillations can be characterised precisely, or random if the oscillations can only be analysed statistically.

<span class="mw-page-title-main">Harmonic damper</span>

A harmonic damper is a device fitted to the free end of the crankshaft of an internal combustion engine to counter torsional and resonance vibrations from the crankshaft. This device must be an interference fit to the crankshaft in order to operate in an effective manner. An interference fit ensures the device moves in perfect step with the crankshaft. It is essential on engines with long crankshafts and V8 engines with cross plane cranks, or V6 and straight-three engines with uneven firing order. Harmonics and torsional vibrations can greatly reduce crankshaft life, or cause instantaneous failure if the crankshaft runs at or through an amplified resonance. Dampers are designed with a specific weight (mass) and diameter, which are dependent on the damping material/method used, to reduce mechanical Q factor, or damp, crankshaft resonances.

<span class="mw-page-title-main">Brüel & Kjær</span> Danish multinational company

Brüel & Kjær was a Danish multinational engineering and electronics company headquartered in Nærum, near Copenhagen. It was the largest producer in the world of equipment for acoustic and vibrational measurements Brüel & Kjær is a subsidiary of Spectris.

<span class="mw-page-title-main">Mechanical filter</span> Type of signal processing filter

A mechanical filter is a signal processing filter usually used in place of an electronic filter at radio frequencies. Its purpose is the same as that of a normal electronic filter: to pass a range of signal frequencies, but to block others. The filter acts on mechanical vibrations which are the analogue of the electrical signal. At the input and output of the filter, transducers convert the electrical signal into, and then back from, these mechanical vibrations.

Psychoacoustics is the branch of psychophysics involving the scientific study of sound perception and audiology—how human auditory system perceives various sounds. More specifically, it is the branch of science studying the psychological responses associated with sound. Psychoacoustics is an interdisciplinary field of many areas, including psychology, acoustics, electronic engineering, physics, biology, physiology, and computer science.

Active sound design is an acoustic technology concept used in automotive vehicles to alter or enhance the sound inside and outside of the vehicle. Active sound design (ASD) often uses active noise control and acoustic enhancement techniques to achieve a synthesized vehicle sound.

Ernst Terhardt is a German engineer and psychoacoustician who made significant contributions in diverse areas of audio communication including pitch perception, music cognition, and Fourier transformation. He was professor in the area of acoustic communication at the Institute of Electroacoustics, Technical University of Munich, Germany.

Electromagnetically induced acoustic noise (and vibration), electromagnetically excited acoustic noise, or more commonly known as coil whine, is audible sound directly produced by materials vibrating under the excitation of electromagnetic forces. Some examples of this noise include the mains hum, hum of transformers, the whine of some rotating electric machines, or the buzz of fluorescent lamps. The hissing of high voltage transmission lines is due to corona discharge, not magnetism.

Noise refers to many types of random, troublesome, problematic, or unwanted signals.

References

  1. Wang, Xu (2010). Vehicle noise and vibration refinement. Cambridge, UK: Woodhead Publishing Ltd. ISBN   978-1-84569-497-5 . Retrieved 5 December 2016.

Bibliography