Organoscandium chemistry

Last updated
Structure of (C5H5)Sc(CH2tms)2(thf) (tms = Si(CH3)3, thf = tetrahydrofuran). LURKIT.png
Structure of (C5H5)Sc(CH2tms)2(thf) (tms = Si(CH3)3, thf = tetrahydrofuran).

Organoscandium chemistry is an area with organometallic compounds focused on compounds with at least one carbon to scandium chemical bond. [2] [3] The interest in organoscandium compounds is mostly academic but motivated by potential practical applications in catalysis, especially in polymerization. A common precursor is scandium chloride, especially its THF complex. [4]

Contents

As with the other elements in group 3 – e.g. yttrium, forming organoyttrium compounds – and the lanthanides, the dominant oxidation state for scandium in organometallic compounds is +3 (electron configuration [Ar] 3d14s2). The members of this group also have large ionic radii with vacant s,p and d orbitals (88 pm for Sc3+ compared to 67 pm for Al 3+) and as a result they behave as hard Lewis acids and tend to have high coordination numbers of 9 to 12. The metal to ligand chemical bond is largely ionic.

Illustrative complexes

Sc(III) derivatives

Many organoscandium(III) compounds have at least one cyclopentadienyl-type ligand. The reaction of scandium trichloride with two equivalents of sodium cyclopentadienide (NaCp) produces the chloride-bridged dimer:

2 ScCl3 + 4 NaCp → [Cp2Sc(μ-Cl)]2 + 4 NaCl

Cp3Sc is a polymer wherein one third of the Cp ligands serving as bridging ligands. [5]

Bulkier cyclopentadienide ligands give monoscandium derivatives, e.g. (C5Me5)2ScCl. [6] The corresponding alkyls polymerize alkenes. [7] [8]

The synthesis of a tris(allyl)scandium complex is analogous to the above methods, involving the reaction of ScCl3 with allyl potassium in THF solution, The product is Sc(C3H5)3(THF)2 wherein two allyl ligands are η3 coordinated and one allyl ligand is η1. [9]

Sc(II) and Sc(I) derivatives

Organoscandium compounds in lower oxidation states have been prepared. [10] [11]

Related Research Articles

<span class="mw-page-title-main">Metallocene</span>

A metallocene is a compound typically consisting of two cyclopentadienyl anions (C
5
H
5
, abbreviated Cp) bound to a metal center (M) in the oxidation state II, with the resulting general formula (C5H5)2M. Closely related to the metallocenes are the metallocene derivatives, e.g. titanocene dichloride, vanadocene dichloride. Certain metallocenes and their derivatives exhibit catalytic properties, although metallocenes are rarely used industrially. Cationic group 4 metallocene derivatives related to [Cp2ZrCH3]+ catalyze olefin polymerization.

<span class="mw-page-title-main">Cyclopentadienyl complex</span> Coordination complex of a metal and Cp⁻ ions

A cyclopentadienyl complex is a coordination complex of a metal and cyclopentadienyl groups. Cyclopentadienyl ligands almost invariably bind to metals as a pentahapto (η5-) bonding mode. The metal–cyclopentadienyl interaction is typically drawn as a single line from the metal center to the center of the Cp ring.

<span class="mw-page-title-main">Pentamethylcyclopentadiene</span> Chemical compound

1,2,3,4,5-Pentamethylcyclopentadiene is a cyclic diene with the formula C5Me5H (Me = CH3). 1,2,3,4,5-Pentamethylcyclopentadiene is the precursor to the ligand 1,2,3,4,5-pentamethylcyclopentadienyl, which is often denoted Cp* (C5Me5) and read as "C P star", the "star" signifying the five methyl groups radiating from the core of the ligand. In contrast to less-substituted cyclopentadiene derivatives, Cp*H is not prone to dimerization.

<span class="mw-page-title-main">Titanocene dichloride</span> Chemical compound

Titanocene dichloride is the organotitanium compound with the formula (η5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

Transmetalation (alt. spelling: transmetallation) is a type of organometallic reaction that involves the transfer of ligands from one metal to another. It has the general form:

<span class="mw-page-title-main">Sandwich compound</span> Chemical compound made of two ring ligands bound to a metal

In organometallic chemistry, a sandwich compound is a chemical compound featuring a metal bound by haptic, covalent bonds to two arene (ring) ligands. The arenes have the formula CnHn, substituted derivatives and heterocyclic derivatives. Because the metal is usually situated between the two rings, it is said to be "sandwiched". A special class of sandwich complexes are the metallocenes.

<span class="mw-page-title-main">Organoactinide chemistry</span> Study of chemical compounds containing actinide-carbon bonds

Organoactinide chemistry is the science exploring the properties, structure and reactivity of organoactinide compounds, which are organometallic compounds containing a carbon to actinide chemical bond.

<span class="mw-page-title-main">Group 2 organometallic chemistry</span>

Group 2 organometallic chemistry refers to the chemistry of compounds containing carbon bonded to any group 2 element. By far the most common group 2 organometallic compounds are the magnesium-containing Grignard reagents which are widely used in organic chemistry. Other organmetallic group 2 compounds are rare and are typically limited to academic interests.

<span class="mw-page-title-main">Sodium cyclopentadienide</span> Chemical compound

Sodium cyclopentadienide is an organosodium compound with the formula C5H5Na. The compound is often abbreviated as NaCp, where Cp is the cyclopentadienide anion. Sodium cyclopentadienide is a colorless solid, although samples often are pink owing to traces of oxidized impurities.

<span class="mw-page-title-main">Organocobalt chemistry</span> Chemistry of compounds with a carbon to cobalt bond

Organocobalt chemistry is the chemistry of organometallic compounds containing a carbon to cobalt chemical bond. Organocobalt compounds are involved in several organic reactions and the important biomolecule vitamin B12 has a cobalt-carbon bond. Many organocobalt compounds exhibit useful catalytic properties, the preeminent example being dicobalt octacarbonyl.

Organoiron chemistry is the chemistry of iron compounds containing a carbon-to-iron chemical bond. Organoiron compounds are relevant in organic synthesis as reagents such as iron pentacarbonyl, diiron nonacarbonyl and disodium tetracarbonylferrate. While iron adopts oxidation states from Fe(−II) through to Fe(VII), Fe(IV) is the highest established oxidation state for organoiron species. Although iron is generally less active in many catalytic applications, it is less expensive and "greener" than other metals. Organoiron compounds feature a wide range of ligands that support the Fe-C bond; as with other organometals, these supporting ligands prominently include phosphines, carbon monoxide, and cyclopentadienyl, but hard ligands such as amines are employed as well.

Organovanadium chemistry is the chemistry of organometallic compounds containing a carbon (C) to vanadium (V) chemical bond. Organovanadium compounds find only minor use as reagents in organic synthesis but are significant for polymer chemistry as catalysts.

In organometallic chemistry, bent metallocenes are a subset of metallocenes. In bent metallocenes, the ring systems coordinated to the metal are not parallel, but are tilted at an angle. A common example of a bent metallocene is Cp2TiCl2. Several reagents and much research is based on bent metallocenes.

<span class="mw-page-title-main">Cyclopentadienyliron dicarbonyl dimer</span> Chemical compound

Cyclopentadienyliron dicarbonyl dimer is an organometallic compound with the formula [(η5-C5H5)Fe(CO)2]2, often abbreviated to Cp2Fe2(CO)4, [CpFe(CO)2]2 or even Fp2, with the colloquial name "fip dimer". It is a dark reddish-purple crystalline solid, which is readily soluble in moderately polar organic solvents such as chloroform and pyridine, but less soluble in carbon tetrachloride and carbon disulfide. Cp2Fe2(CO)4 is insoluble in but stable toward water. Cp2Fe2(CO)4 is reasonably stable to storage under air and serves as a convenient starting material for accessing other Fp (CpFe(CO)2) derivatives (described below).

Scandium compounds are compounds containing the element scandium. The chemistry of scandium is almost completely dominated by the trivalent ion, Sc3+, due to its electron configuration, [Ar] 3d14s2. The radii of M3+ ions in the table below indicate that the chemical properties of scandium ions have more in common with yttrium ions than with aluminium ions. In part because of this similarity, scandium is often classified as a lanthanide-like element.

<span class="mw-page-title-main">Transition metal alkyl complexes</span> Coordination complex

Transition metal alkyl complexes are coordination complexes that contain a bond between a transition metal and an alkyl ligand. Such complexes are not only pervasive but are of practical and theoretical interest.

Magnesocene, also known as bis(cyclopentadienyl)magnesium(II) and sometimes abbreviated as MgCp2, is an organometallic compound with the formula Mg(η5-C5H5)2. It is an example of an s-block main group sandwich compound, structurally related to the d-block element metallocenes, and consists of a central magnesium atom sandwiched between two cyclopentadienyl rings.

<span class="mw-page-title-main">Lanthanocene</span>

A lanthanocene is a type of metallocene compound that contains an element from the lanthanide series. The most common lanthanocene complexes contain two cyclopentadienyl anions and an X type ligand, usually hydride or alkyl ligand.

β-Carbon elimination is a type of reaction in organometallic chemistry wherein an allyl ligand bonded to a metal center is broken into the corresponding metal-bonded alkyl (aryl) ligand and an alkene. It is a subgroup of elimination reactions. Though less common and less understood than β-hydride elimination, it is an important step involved in some olefin polymerization processes and transition-metal-catalyzed organic reactions.

<span class="mw-page-title-main">(Trimethylsilyl)methyllithium</span> Chemical compound

(Trimethylsilyl)methyllithium is classified both as an organolithium compound and an organosilicon compound. It has the empirical formula LiCH2Si(CH3)3, often abbreviated LiCH2tms. It crystallizes as the hexagonal prismatic hexamer [LiCH2tms]6, akin to some polymorphs of methyllithium. Many adducts have been characterized including the diethyl ether complexed cubane [Li43-CH2tms)4(Et2O)2] and [Li2(μ-CH2tms)2(tmeda)2].

References

  1. Li, Xiaofang; Nishiura, Masayoshi; Hu, Lihong; Mori, Kyouichi; Hou, Zhaomin (2009). "Alternating and Random Copolymerization of Isoprene and Ethylene Catalyzed by Cationic Half-Sandwich Scandium Alkyls". Journal of the American Chemical Society. 131 (38): 13870–13882. doi:10.1021/ja9056213. PMID   19728718.
  2. Synthesis of Organometallic Compounds: A Practical Guide Sanshiro Komiya Ed. 1997
  3. C. Elschenbroich, A. Salzer Organometallics : A Concise Introduction (2nd Ed) (1992) from Wiley-VCH: Weinheim. ISBN   3-527-28165-7
  4. Manzer, L. E. (1982). Tetrahydrofuran Complexes of Selected Early Transition Metals. Inorganic Syntheses. Vol. 21. pp. 135–140. doi:10.1002/9780470132524.ch31.
  5. Atwood, Jerry L.; Smith, Karl D. (1973). "Crystal Structure of di-µ-chloro-bis[di-η-cyclopentadienylscandium(III)]". J. Chem. Soc., Dalton Trans. (22): 2487–2490. doi:10.1039/DT9730002487.
  6. Huynh, Winn; Culver, Damien B.; Tafazolian, Hosein; Conley, Matthew P. (2018). "Solid-state 45Sc NMR Studies of Cp*2Sc–X and Cp*2ScX(THF)". Dalton Transactions. 47 (37): 13063–13071. doi:10.1039/C8DT02623H. PMID   30160275.
  7. Thompson, Mark E.; Baxter, Steven M.; Bulls, A. Ray; Burger, Barbara J.; Nolan, Michael C.; Santarsiero, Bernard D.; Schaefer, William P.; Bercaw, John E. (1987). "σ-Bond Metathesis for Carbon-Hydrogen Bonds of Hydrocarbons and Sc-R (R = H, alkyl, aryl) Bonds of Permethylscandocene Derivatives. Evidence for Noninvolvement of the π System in Electrophilic Activation of Aromatic and Vinylic C-H Bonds". Journal of the American Chemical Society. 109: 203–219. doi:10.1021/ja00235a031.
  8. Bouwkamp, Marco W.; Budzelaar, Peter H. M.; Gercama, Jeroen; Del Hierro Morales, Isabel; De Wolf, Jeanette; Meetsma, Auke; Troyanov, Sergei I.; Teuben, Jan H.; Hessen, Bart (2005). "Naked (C5Me5)2M Cations (M = Sc, Ti, and V) and Their Fluoroarene Complexes" (PDF). Journal of the American Chemical Society. 127 (41): 14310–14319. doi:10.1021/ja054544i. PMID   16218625.
  9. Standfuss, Sabine; Abinet, Elise; Spaniol, Thomas P.; Okuda, Jun (2011). "Allyl Complexes of Scandium: Synthesis and Structure of Neutral, Cationic and Anionic Derivatives". Chemical Communications. 47 (41): 11441–11443. doi:10.1039/C1CC14180E. PMID   21946865.
  10. Polly L. Arnold; F. Geoffrey; N. Cloke; Peter B. Hitchcock & John F. Nixon (1996). "The First Example of a Formal Scandium(I) Complex: Synthesis and Molecular Structure of a 22-Electron Scandium Triple Decker Incorporating the Novel 1,3,5-Triphosphabenzene Ring". J. Am. Chem. Soc. 118 (32): 7630–7631. doi:10.1021/ja961253o.
  11. Ana Mirela Neculai; Dante Neculai; Herbert W. Roesky; Jörg Magull; Marc Baldus; et al. (2002). "Stabilization of a Diamagnetic ScIBr Molecule in a Sandwich-Like Structure". Organometallics. 21 (13): 2590–2592. doi:10.1021/om020090b.