Random-fuzzy variable

Last updated

In measurements, the measurement obtained can suffer from two types of uncertainties. [1] The first is the random uncertainty which is due to the noise in the process and the measurement. The second contribution is due to the systematic uncertainty which may be present in the measuring instrument. Systematic errors, if detected, can be easily compensated as they are usually constant throughout the measurement process as long as the measuring instrument and the measurement process are not changed. But it can not be accurately known while using the instrument if there is a systematic error and if there is, how much? Hence, systematic uncertainty could be considered as a contribution of a fuzzy nature.

Contents

This systematic error can be approximately modeled based on our past data about the measuring instrument and the process.

Statistical methods can be used to calculate the total uncertainty from both systematic and random contributions in a measurement. [2] [3] [4] But, the computational complexity is very high and hence, are not desirable.

L.A.Zadeh introduced the concepts of fuzzy variables and fuzzy sets. [5] [6] Fuzzy variables are based on the theory of possibility and hence are possibility distributions. This makes them suitable to handle any type of uncertainty, i.e., both systematic and random contributions to the total uncertainty. [7] [8] [9]

Random-fuzzy variable (RFV) is a type 2 fuzzy variable, [10] defined using the mathematical possibility theory, [5] [6] used to represent the entire information associated to a measurement result. It has an internal possibility distribution and an external possibility distribution called membership functions. The internal distribution is the uncertainty contributions due to the systematic uncertainty and the bounds of the RFV are because of the random contributions. The external distribution gives the uncertainty bounds from all contributions.

Definition

Random-Fuzzy Variable Random-Fuzzy Variable.png
Random-Fuzzy Variable

A Random-fuzzy Variable (RFV) is defined as a type 2 fuzzy variable which satisfies the following conditions: [11]

An RFV can be seen in the figure. The external membership function is the distribution in blue and the internal membership function is the distribution in red. Both the membership functions are possibility distributions. Both the internal and external membership functions have a unitary value of possibility only in the rectangular part of the RFV. So, all three conditions have been satisfied.

If there are only systematic errors in the measurement, then the RFV simply becomes a fuzzy variable which consists of just the internal membership function. Similarly, if there is no systematic error, then the RFV becomes a fuzzy variable with just the random contributions and therefore, is just the possibility distribution of the random contributions.

Construction

A Random-fuzzy variable can be constructed using an Internal possibility distribution(rinternal) and a random possibility distribution(rrandom).

The random distribution(rrandom)

rrandom is the possibility distribution of the random contributions to the uncertainty. Any measurement instrument or process suffers from random error contributions due to intrinsic noise or other effects.

This is completely random in nature and is a normal probability distribution when several random contributions are combined according to the Central limit theorem. [12]

But, there can also be random contributions from other probability distributions such as a uniform distribution, gamma distribution and so on.

The probability distribution can be modeled from the measurement data. Then, the probability distribution can be used to model an equivalent possibility distribution using the maximally specific probability-possibility transformation. [13]

Some common probability distributions and the corresponding possibility distributions can be seen in the figures.

Normal distribution in probability and possibility. Normal distribution in probability and possibility.png
Normal distribution in probability and possibility.
Uniform distribution in probability and possibility. Uniform distribution in probability and possibility.png
Uniform distribution in probability and possibility.
Triangular distribution in probability and possibility. Triangular distribution in probability and possibility.png
Triangular distribution in probability and possibility.

The internal distribution(rinternal)

rinternal is the internal distribution in the RFV which is the possibility distribution of the systematic contribution to the total uncertainty. This distribution can be built based on the information that is available about the measuring instrument and the process.

The largest possible distribution is the uniform or rectangular possibility distribution. This means that every value in the specified interval is equally possible. This actually represents the state of total ignorance according to the theory of evidence [14] which means it represents a scenario in which there is maximum lack of information.

This distribution is used for the systematic error when we have absolutely no idea about the systematic error except that it belongs to a particular interval of values. This is quite common in measurements.

But, in certain cases, it may be known that certain values have a higher or lower degrees of belief than certain other values. In this case, depending on the degrees of belief for the values, an appropriate possibility distribution could be constructed.

The construction of the external distribution(rexternal) and the RFV

After modeling the random and internal possibility distribution, the external membership function, rexternal, of the RFV can be constructed by using the following equation: [15]

where is the mode of , which is the peak in the membership function of and Tmin is the minimum triangular norm. [16]

RFV can also be built from the internal and random distributions by considering the α-cuts of the two possibility distributions(PDs).

An α-cut of a fuzzy variable F can be defined as [17] [18]

So, essentially an α-cut is the set of values for which the value of the membership function of the fuzzy variable is greater than α. So, this gives the upper and lower bounds of the fuzzy variable F for each α-cut.

The α-cut of an RFV, however, has 4 specific bounds and is given by . [11] and are the lower and upper bounds respectively of the external membership function(rexternal) which is a fuzzy variable on its own. and are the lower and upper bounds respectively of the internal membership function(rinternal) which is a fuzzy variable on its own.

To build the RFV, let us consider the α-cuts of the two PDs i.e., rrandom and rinternal for the same value of α. This gives the lower and upper bounds for the two α-cuts. Let them be and for the random and internal distributions respectively. can be again divided into two sub-intervals and where is the mode of the fuzzy variable. Then, the α-cut for the RFV for the same value of α, can be defined by [11]

Using the above equations, the α-cuts are calculated for every value of α which gives us the final plot of the RFV.

A Random-Fuzzy variable is capable of giving a complete picture of the random and systematic contributions to the total uncertainty from the α-cuts for any confidence level as the confidence level is nothing but 1-α. [17] [18]

An example for the construction of the corresponding external membership function(rexternal) and the RFV from a random PD and an internal PD can be seen in the following figure.

Construction of an external membership function and the RFV from internal and random possibility distributions. Construction of an RFV.png
Construction of an external membership function and the RFV from internal and random possibility distributions.

See also

Related Research Articles

<span class="mw-page-title-main">Cumulative distribution function</span> Probability that random variable X is less than or equal to x

In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable , or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .

<span class="mw-page-title-main">Standard deviation</span> In statistics, a measure of variation

In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean of the set, while a high standard deviation indicates that the values are spread out over a wider range.

<span class="mw-page-title-main">Pareto distribution</span> Probability distribution

The Pareto distribution, named after the Italian civil engineer, economist, and sociologist Vilfredo Pareto, is a power-law probability distribution that is used in description of social, quality control, scientific, geophysical, actuarial, and many other types of observable phenomena; the principle originally applied to describing the distribution of wealth in a society, fitting the trend that a large portion of wealth is held by a small fraction of the population. The Pareto principle or "80-20 rule" stating that 80% of outcomes are due to 20% of causes was named in honour of Pareto, but the concepts are distinct, and only Pareto distributions with shape value of log45 ≈ 1.16 precisely reflect it. Empirical observation has shown that this 80-20 distribution fits a wide range of cases, including natural phenomena and human activities.

In mathematics, fuzzy sets are sets whose elements have degrees of membership. Fuzzy sets were introduced independently by Lotfi A. Zadeh in 1965 as an extension of the classical notion of set. At the same time, Salii (1965) defined a more general kind of structure called an L-relation, which he studied in an abstract algebraic context. Fuzzy relations, which are now used throughout fuzzy mathematics and have applications in areas such as linguistics, decision-making, and clustering, are special cases of L-relations when L is the unit interval [0, 1].

<span class="mw-page-title-main">Least squares</span> Approximation method in statistics

The method of least squares is a standard approach in regression analysis to approximate the solution of overdetermined systems by minimizing the sum of the squares of the residuals made in the results of each individual equation.

<span class="mw-page-title-main">Logit</span> Function in statistics

In statistics, the logit function is the quantile function associated with the standard logistic distribution. It has many uses in data analysis and machine learning, especially in data transformations.

<span class="mw-page-title-main">Beta distribution</span> Probability distribution

In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.

In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph. If the function represents mass density, then the zeroth moment is the total mass, the first moment is the center of mass, and the second moment is the moment of inertia. If the function is a probability distribution, then the first moment is the expected value, the second central moment is the variance, the third standardized moment is the skewness, and the fourth standardized moment is the kurtosis. The mathematical concept is closely related to the concept of moment in physics.

In statistics, propagation of uncertainty is the effect of variables' uncertainties on the uncertainty of a function based on them. When the variables are the values of experimental measurements they have uncertainties due to measurement limitations which propagate due to the combination of variables in the function.

In probability and statistics, a mixture distribution is the probability distribution of a random variable that is derived from a collection of other random variables as follows: first, a random variable is selected by chance from the collection according to given probabilities of selection, and then the value of the selected random variable is realized. The underlying random variables may be random real numbers, or they may be random vectors, in which case the mixture distribution is a multivariate distribution.

In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a measured quantity. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation. By international agreement, this uncertainty has a probabilistic basis and reflects incomplete knowledge of the quantity value. It is a non-negative parameter.

Info-gap decision theory seeks to optimize robustness to failure under severe uncertainty, in particular applying sensitivity analysis of the stability radius type to perturbations in the value of a given estimate of the parameter of interest. It has some connections with Wald's maximin model; some authors distinguish them, others consider them instances of the same principle.

In probability theory and statistics, the Dirichlet-multinomial distribution is a family of discrete multivariate probability distributions on a finite support of non-negative integers. It is also called the Dirichlet compound multinomial distribution (DCM) or multivariate Pólya distribution. It is a compound probability distribution, where a probability vector p is drawn from a Dirichlet distribution with parameter vector , and an observation drawn from a multinomial distribution with probability vector p and number of trials n. The Dirichlet parameter vector captures the prior belief about the situation and can be seen as a pseudocount: observations of each outcome that occur before the actual data is collected. The compounding corresponds to a Pólya urn scheme. It is frequently encountered in Bayesian statistics, machine learning, empirical Bayes methods and classical statistics as an overdispersed multinomial distribution.

In probability theory and statistics, a categorical distribution is a discrete probability distribution that describes the possible results of a random variable that can take on one of K possible categories, with the probability of each category separately specified. There is no innate underlying ordering of these outcomes, but numerical labels are often attached for convenience in describing the distribution,. The K-dimensional categorical distribution is the most general distribution over a K-way event; any other discrete distribution over a size-K sample space is a special case. The parameters specifying the probabilities of each possible outcome are constrained only by the fact that each must be in the range 0 to 1, and all must sum to 1.

Subjective logic is a type of probabilistic logic that explicitly takes epistemic uncertainty and source trust into account. In general, subjective logic is suitable for modeling and analysing situations involving uncertainty and relatively unreliable sources. For example, it can be used for modeling and analysing trust networks and Bayesian networks.

<span class="mw-page-title-main">Poisson distribution</span> Discrete probability distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. It is named after French mathematician Siméon Denis Poisson. The Poisson distribution can also be used for the number of events in other specified interval types such as distance, area, or volume.

In probability theory, the Mills ratio of a continuous random variable is the function

<span class="mw-page-title-main">Arcsine distribution</span> Type of probability distribution

In probability theory, the arcsine distribution is the probability distribution whose cumulative distribution function involves the arcsine and the square root:

Industrial process data validation and reconciliation, or more briefly, process data reconciliation (PDR), is a technology that uses process information and mathematical methods in order to automatically ensure data validation and reconciliation by correcting measurements in industrial processes. The use of PDR allows for extracting accurate and reliable information about the state of industry processes from raw measurement data and produces a single consistent set of data representing the most likely process operation.

In statistics, a Pólya urn model, named after George Pólya, is a type of statistical model used as an idealized mental exercise framework, unifying many treatments.

References

  1. Taylor, John R. (John Robert), 1939- (1997). An introduction to error analysis : the study of uncertainties in physical measurements (2nd ed.). Sausalito, Calif.: University Science Books. ISBN   0935702423. OCLC   34150960.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. Pietrosanto, A.; Betta, G.; Liguori, C. (1999-01-01). "Structured approach to estimate the measurement uncertainty in digital signal elaboration algorithms". IEE Proceedings - Science, Measurement and Technology. 146 (1): 21–26. doi:10.1049/ip-smt:19990001. ISSN   1350-2344.
  3. Betta, Giovanni; Liguori, Consolatina; Pietrosanto, Antonio (2000-06-01). "Propagation of uncertainty in a discrete Fourier transform algorithm". Measurement. 27 (4): 231–239. doi:10.1016/S0263-2241(99)00068-8. ISSN   0263-2241.
  4. Ferrero, A.; Lazzaroni, M.; Salicone, S. (2002). "A calibration procedure for a digital instrument for electric power quality measurement". IEEE Transactions on Instrumentation and Measurement. 51 (4): 716–722. doi:10.1109/TIM.2002.803293. ISSN   0018-9456.
  5. 1 2 Zadeh, L.A. (June 1965). "Fuzzy sets". Information and Control . San Diego. 8 (3): 338–353. doi: 10.1016/S0019-9958(65)90241-X . ISSN   0019-9958. Wikidata   Q25938993.
  6. 1 2 Zadeh, L.A. (January 1973). "Outline of a New Approach to the Analysis of Complex Systems and Decision Processes". IEEE Transactions on Systems, Man, and Cybernetics . IEEE Systems, Man, and Cybernetics Society. SMC-3 (1): 28–44. doi:10.1109/TSMC.1973.5408575. ISSN   1083-4419. Wikidata   Q56083455.
  7. Mauris, G.; Berrah, L.; Foulloy, L.; Haurat, A. (2000). "Fuzzy handling of measurement errors in instrumentation". IEEE Transactions on Instrumentation and Measurement. 49 (1): 89–93. doi:10.1109/19.836316.
  8. Urbanski, Michał K.; Wa̧sowski, Janusz (2003-07-01). "Fuzzy approach to the theory of measurement inexactness". Measurement. Fundamental of Measurement. 34 (1): 67–74. doi:10.1016/S0263-2241(03)00021-6. ISSN   0263-2241.
  9. Ferrero, A.; Salicone, S. (2003). "An innovative approach to the determination of uncertainty in measurements based on fuzzy variables". IEEE Transactions on Instrumentation and Measurement. 52 (4): 1174–1181. doi:10.1109/TIM.2003.815993. ISSN   0018-9456.
  10. Castillo, Oscar; Melin, Patricia; Kacprzyk, Janusz; Pedrycz, Witold (2007). "Type-2 Fuzzy Logic: Theory and Applications". 2007 IEEE International Conference on Granular Computing (GRC 2007). p. 145. doi:10.1109/grc.2007.118. ISBN   978-0-7695-3032-1. S2CID   1942035.
  11. 1 2 3 Salicone, Simona (23 April 2018). Measuring uncertainty within the theory of evidence. Prioli, Marco. Cham, Switzerland. ISBN   9783319741390. OCLC   1032810109.
  12. Ross, Sheldon M. (2009). Introduction to Probability and Statistics for Engineers and Scientists (4th ed.). Burlington: Elsevier Science. ISBN   9780080919379. OCLC   761646775.
  13. KLIR†, GEORGE J.; PARVIZ, BEHZAD (1992-08-01). "Probability-Possibility Transformations: A Comparison". International Journal of General Systems. 21 (3): 291–310. doi:10.1080/03081079208945083. ISSN   0308-1079.
  14. Shafer, Glenn, 1946- (1976). A mathematical theory of evidence . Princeton, N.J.: Princeton University Press. ISBN   0691081751. OCLC   1859710.{{cite book}}: CS1 maint: multiple names: authors list (link)
  15. Ferrero, Alessandro; Prioli, Marco; Salicone, Simona (2015). "Uncertainty propagation through non-linear measurement functions by means of joint Random-Fuzzy Variables". 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings. Pisa, Italy: IEEE: 1723–1728. doi:10.1109/I2MTC.2015.7151540. ISBN   9781479961146. S2CID   22811201.
  16. Klement, Erich Peter; Mesiar, Radko; Pap, Endre (2004-04-01). "Triangular norms. Position paper I: basic analytical and algebraic properties". Fuzzy Sets and Systems. Advances in Fuzzy Logic. 143 (1): 5–26. doi:10.1016/j.fss.2003.06.007. ISSN   0165-0114.
  17. 1 2 Zadeh, L.A. (September 1975). "Fuzzy logic and approximate reasoning". Synthese . Springer. 30 (3–4): 407–428. doi:10.1007/BF00485052. ISSN   0039-7857. OCLC   714993477. S2CID   46975216. Wikidata   Q57275767.
  18. 1 2 Kaufmann, A. (Arnold), 1911- (1991). Introduction to fuzzy arithmetic : theory and applications. Gupta, Madan M. ([New ed.] ed.). New York, N.Y.: Van Nostrand Reinhold Co. ISBN   0442008996. OCLC   24309785.{{cite book}}: CS1 maint: multiple names: authors list (link)