Separation axiom

Last updated
Separation axioms
in topological spaces
Kolmogorov classification
T0  (Kolmogorov)
T1  (Fréchet)
T2  (Hausdorff)
T2½ (Urysohn)
completely T2  (completely Hausdorff)
T3  (regular Hausdorff)
T3½ (Tychonoff)
T4  (normal Hausdorff)
T5  (completely normal
 Hausdorff)
T6  (perfectly normal
 Hausdorff)
An illustration of some of the separation axioms. Grey amorphous broken-outline regions indicate open sets surrounding disjoint closed sets or points: red solid-outline circles denote closed sets while black dots represent points. Hausdorff regular normal space diagram.png
An illustration of some of the separation axioms. Grey amorphous broken-outline regions indicate open sets surrounding disjoint closed sets or points: red solid-outline circles denote closed sets while black dots represent points.

In topology and related fields of mathematics, there are several restrictions that one often makes on the kinds of topological spaces that one wishes to consider. Some of these restrictions are given by the separation axioms. These are sometimes called Tychonoff separation axioms, after Andrey Tychonoff.

Contents

The separation axioms are not fundamental axioms like those of set theory, but rather defining properties which may be specified to distinguish certain types of topological spaces. The separation axioms are denoted with the letter "T" after the German Trennungsaxiom ("separation axiom"), and increasing numerical subscripts denote stronger and stronger properties.

The precise definitions of the separation axioms have varied over time. Especially in older literature, different authors might have different definitions of each condition.

Preliminary definitions

Before we define the separation axioms themselves, we give concrete meaning to the concept of separated sets (and points) in topological spaces. (Separated sets are not the same as separated spaces, defined in the next section.)

The separation axioms are about the use of topological means to distinguish disjoint sets and distinct points. It's not enough for elements of a topological space to be distinct (that is, unequal); we may want them to be topologically distinguishable. Similarly, it's not enough for subsets of a topological space to be disjoint; we may want them to be separated (in any of various ways). The separation axioms all say, in one way or another, that points or sets that are distinguishable or separated in some weak sense must also be distinguishable or separated in some stronger sense.

Let X be a topological space. Then two points x and y in X are topologically distinguishable if they do not have exactly the same neighbourhoods (or equivalently the same open neighbourhoods); that is, at least one of them has a neighbourhood that is not a neighbourhood of the other (or equivalently there is an open set that one point belongs to but the other point does not). That is, at least one of the points does not belong to the other's closure.

Two points x and y are separated if each of them has a neighbourhood that is not a neighbourhood of the other; that is, neither belongs to the other's closure. More generally, two subsets A and B of X are separated if each is disjoint from the other's closure, though the closures themselves do not have to be disjoint. Equivalently, each subset is included in an open set disjoint from the other subset. All of the remaining conditions for separation of sets may also be applied to points (or to a point and a set) by using singleton sets. Points x and y will be considered separated, by neighbourhoods, by closed neighbourhoods, by a continuous function, precisely by a function, if and only if their singleton sets {x} and {y} are separated according to the corresponding criterion.

Subsets A and B are separated by neighbourhoods if they have disjoint neighbourhoods. They are separated by closed neighbourhoods if they have disjoint closed neighbourhoods. They are separated by a continuous function if there exists a continuous function f from the space X to the real line R such that A is a subset of the preimage f−1({0}) and B is a subset of the preimage f−1({1}). Finally, they are precisely separated by a continuous function if there exists a continuous function f from X to R such that A equals the preimage f−1({0}) and B equals f−1({1}).

These conditions are given in order of increasing strength: Any two topologically distinguishable points must be distinct, and any two separated points must be topologically distinguishable. Any two separated sets must be disjoint, any two sets separated by neighbourhoods must be separated, and so on.

Main definitions

These definitions all use essentially the preliminary definitions above.

Many of these names have alternative meanings in some of mathematical literature; for example, the meanings of "normal" and "T4" are sometimes interchanged, similarly "regular" and "T3", etc. Many of the concepts also have several names; however, the one listed first is always least likely to be ambiguous.

Most of these axioms have alternative definitions with the same meaning; the definitions given here fall into a consistent pattern that relates the various notions of separation defined in the previous section. Other possible definitions can be found in the individual articles.

In all of the following definitions, X is again a topological space.

The following table summarizes the separation axioms as well as the implications between them: cells which are merged represent equivalent properties, each axiom implies the ones in the cells to its left, and if we assume the T1 axiom, then each axiom also implies the ones in the cells above it (for example, all normal T1 spaces are also completely regular).

SeparatedSeparated by neighborhoodsSeparated by closed neighborhoodsSeparated by functionPrecisely separated by function
Distinguishable points Symmetric [4] Preregular
Distinct points Fréchet Hausdorff Urysohn Completely Hausdorff Perfectly Hausdorff
Closed set and point outside Symmetric [5] Regular Completely regular Perfectly normal
Disjoint closed setsalways Normal
Separated setsalways Completely normal discrete space

Relationships between the axioms

The T0 axiom is special in that it can not only be added to a property (so that completely regular plus T0 is Tychonoff) but also be subtracted from a property (so that Hausdorff minus T0 is R1), in a fairly precise sense; see Kolmogorov quotient for more information. When applied to the separation axioms, this leads to the relationships in the table to the left below. In this table, one goes from the right side to the left side by adding the requirement of T0, and one goes from the left side to the right side by removing that requirement, using the Kolmogorov quotient operation. (The names in parentheses given on the left side of this table are generally ambiguous or at least less well known; but they are used in the diagram below.)

Hasse diagram of the separation axioms. Separation axioms.svg
Hasse diagram of the separation axioms.
T0 versionNon-T0 version
T0(No requirement)
T1R0
Hausdorff (T2)R1
T(No special name)
Completely Hausdorff(No special name)
Regular Hausdorff (T3)Regular
Tychonoff (T)Completely regular
Normal T0Normal
Normal Hausdorff (T4)Normal regular
Completely normal T0Completely normal
Completely normal Hausdorff (T5)Completely normal regular
Perfectly normal Hausdorff (T6)Perfectly normal

Other than the inclusion or exclusion of T0, the relationships between the separation axioms are indicated in the diagram to the right. In this diagram, the non-T0 version of a condition is on the left side of the slash, and the T0 version is on the right side. Letters are used for abbreviation as follows: "P" = "perfectly", "C" = "completely", "N" = "normal", and "R" (without a subscript) = "regular". A bullet indicates that there is no special name for a space at that spot. The dash at the bottom indicates no condition.

Two properties may be combined using this diagram by following the diagram upwards until both branches meet. For example, if a space is both completely normal ("CN") and completely Hausdorff ("CT2"), then following both branches up, one finds he spot "•/T5". Since completely Hausdorff spaces are T0 (even though completely normal spaces may not be), one takes the T0 side of the slash, so a completely normal completely Hausdorff space is the same as a T5 space (less ambiguously known as a completely normal Hausdorff space, as can be seen in the table above).

As can be seen from the diagram, normal and R0 together imply a host of other properties, since combining the two properties leads through the many nodes on the right-side branch. Since regularity is the most well known of these, spaces that are both normal and R0 are typically called "normal regular spaces". In a somewhat similar fashion, spaces that are both normal and T1 are often called "normal Hausdorff spaces" by people that wish to avoid the ambiguous "T" notation. These conventions can be generalised to other regular spaces and Hausdorff spaces.

[NB: This diagram does not reflect that perfectly normal spaces are always regular; the editors are working on this now.]

Other separation axioms

There are some other conditions on topological spaces that are sometimes classified with the separation axioms, but these don't fit in with the usual separation axioms as completely. Other than their definitions, they aren't discussed here; see their individual articles.

See also

Notes

  1. Schechter 1997, p. 441.
  2. Schechter 1997, 16.16, p. 442.
  3. Schechter 1997, 16.17, p. 443.
  4. Schechter 1997, 16.6(D), p. 438.
  5. Schechter 1997, 16.6(C), p. 438.

Related Research Articles

In topology and related branches of mathematics, a Hausdorff space ( HOWSS-dorf, HOWZ-dorf), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each that are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters.

In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seeming, topology called the box topology, which can also be given to a product space and which agrees with the product topology when the product is over only finitely many spaces. However, the product topology is "correct" in that it makes the product space a categorical product of its factors, whereas the box topology is too fine; in that sense the product topology is the natural topology on the Cartesian product.

In topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space is any completely regular space that is also a Hausdorff space; there exist completely regular spaces that are not Tychonoff.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

In topology and related branches of mathematics, a normal space is a topological space X that satisfies Axiom T4: every two disjoint closed sets of X have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces.

In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood.

In topology, Urysohn's lemma is a lemma that states that a topological space is normal if and only if any two disjoint closed subsets can be separated by a continuous function.

In topology and related fields of mathematics, a topological space X is called a regular space if every closed subset C of X and a point p not contained in C admit non-overlapping open neighborhoods. Thus p and C can be separated by neighborhoods. This condition is known as Axiom T3. The term "T3 space" usually means "a regular Hausdorff space". These conditions are examples of separation axioms.

In topology and related branches of mathematics, a topological space X is a T0 space or Kolmogorov space (named after Andrey Kolmogorov) if for every pair of distinct points of X, at least one of them has a neighborhood not containing the other. In a T0 space, all points are topologically distinguishable.

In topology and related branches of mathematics, a T1 space is a topological space in which, for every pair of distinct points, each has a neighborhood not containing the other point. An R0 space is one in which this holds for every pair of topologically distinguishable points. The properties T1 and R0 are examples of separation axioms.

In topology and related branches of mathematics, separated sets are pairs of subsets of a given topological space that are related to each other in a certain way: roughly speaking, neither overlapping nor touching. The notion of when two sets are separated or not is important both to the notion of connected spaces as well as to the separation axioms for topological spaces.

<span class="mw-page-title-main">General topology</span> Branch of topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology.

In topology, a discipline within mathematics, an Urysohn space, or T space, is a topological space in which any two distinct points can be separated by closed neighborhoods. A completely Hausdorff space, or functionally Hausdorff space, is a topological space in which any two distinct points can be separated by a continuous function. These conditions are separation axioms that are somewhat stronger than the more familiar Hausdorff axiom T2.

In mathematics, a cofinite subset of a set is a subset whose complement in is a finite set. In other words, contains all but finitely many elements of If the complement is not finite, but is countable, then one says the set is cocountable.

In mathematics, the Sierpiński space is a finite topological space with two points, only one of which is closed. It is the smallest example of a topological space which is neither trivial nor discrete. It is named after Wacław Sierpiński.

In mathematics, a sober space is a topological space X such that every (nonempty) irreducible closed subset of X is the closure of exactly one point of X: that is, every irreducible closed subset has a unique generic point.

In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.

The history of the separation axioms in general topology has been convoluted, with many meanings competing for the same terms and many terms competing for the same concept.

In topology, two points of a topological space X are topologically indistinguishable if they have exactly the same neighborhoods. That is, if x and y are points in X, and Nx is the set of all neighborhoods that contain x, and Ny is the set of all neighborhoods that contain y, then x and y are "topologically indistinguishable" if and only if Nx = Ny. (See Hausdorff's axiomatic neighborhood systems.)

In mathematics, particularly topology, a Gδ space is a topological space in which closed sets are in a way ‘separated’ from their complements using only countably many open sets. A Gδ space may thus be regarded as a space satisfying a different kind of separation axiom. In fact normal Gδ spaces are referred to as perfectly normal spaces, and satisfy the strongest of separation axioms.

References