Shoshonite

Last updated
File:Shoshonite lava flows on South Table Mountain, Colorado Shoshonite lava flows capping South Table Mountain (Denver Formation, Upper Cretaceous; Golden, Colorado, USA) 13.jpg
File:Shoshonite lava flows on South Table Mountain, Colorado

Shoshonite is a type of igneous rock. More specifically, it is a potassium-rich variety of basaltic trachyandesite, [1] composed of olivine, augite and plagioclase phenocrysts in a groundmass with calcic plagioclase and sanidine and some dark-colored volcanic glass. Shoshonite gives its name to the shoshonite series and grades into absarokite with the loss of plagioclase phenocrysts and into banakite with an increase in sanidine. [2] Shoshonite was named by Iddings in 1895 for the Shoshone River in Wyoming. [3] Textural and mineralogical features of potash-rich rocks of the absarokite-shoshonite-banakite series strongly suggest that most of the large crystals and aggregates are not true phenocrysts as previously thought but are xenocrysts and microxenoliths, suggesting a hybrid origin involving assimilation of gabbro by high-temperature syenitic magma. [4]

Contents

Chemical characteristics

Igneous rocks with shoshonitic chemical characteristics must be: [5]

  1. Near-saturated in silica;
  2. Low iron enrichment;
  3. High total alkalies (Na2O + K2O > 5%);
  4. High K2O/Na2O;
  5. Steep positive slope for K2O versus SiO2 at low SiO2;
  6. Enrichment in P, Rb, Sr, Ba, Pb, light rare earth elements;
  7. Low TiO2;
  8. High but variable Al2O3;
  9. High Fe2O3/FeO.

Tectonic settings and examples

Shoshonitic rocks tend to be associated with calc-alkaline island-arc subduction volcanism, but the K-rich shoshonites are generally younger and above deeper, steeper parts or the Benioff zone. [5] [6]

Volcanic rocks of the absarokite-shoshonite-banakite series described from Yellowstone Park by Iddings and the similar ciminite-toscanite series described from western Italy by Washington are associated with leucite-bearing rocks, potassium-rich trachytes and andesitic rocks. Similar associations are described from several other regions including Indonesia and the East African Rift. [7]

In the Aeolian Arc in the southern Tyrrhenian Sea (between the Eurasian and African tectonic plates), volcanism has changed between calc-alkaline to high-K calc-alkaline to shoshonitic with the last one million years, possibly due to the progressive steepening of the Benioff zone, which is inclined at 50-60°. [5] An example of shoshonite lava in this region is the Capo Secco lava shield near Vulcano. [8] Late Cretaceous Puerto Rican volcanism is interpreted to have occurred in a similar tectonic setting. [5]

In places, shoshonitic and high-potassium calc-alkaline magmatism is associated with world-class hydrothermal gold and copper-gold mineralization. Examples include: [6]

Ladolam gold mine, Lihir Island, Papua New Guinea;
Bingham copper-gold mine, Utah;
Grasberg copper-gold mine, Indonesia;
Oyu Tolgoi copper-gold mine, Mongolia.

Related Research Articles

<span class="mw-page-title-main">Mafic</span> Silicate mineral or igneous rock that is rich in magnesium and iron

A mafic mineral or rock is a silicate mineral or igneous rock rich in magnesium and iron. Most mafic minerals are dark in color, and common rock-forming mafic minerals include olivine, pyroxene, amphibole, and biotite. Common mafic rocks include basalt, diabase and gabbro. Mafic rocks often also contain calcium-rich varieties of plagioclase feldspar. Mafic materials can also be described as ferromagnesian.

<span class="mw-page-title-main">Plagioclase</span> Type of feldspar

Plagioclase is a series of tectosilicate (framework silicate) minerals within the feldspar group. Rather than referring to a particular mineral with a specific chemical composition, plagioclase is a continuous solid solution series, more properly known as the plagioclase feldspar series. This was first shown by the German mineralogist Johann Friedrich Christian Hessel (1796–1872) in 1826. The series ranges from albite to anorthite endmembers (with respective compositions NaAlSi3O8 to CaAl2Si2O8), where sodium and calcium atoms can substitute for each other in the mineral's crystal lattice structure. Plagioclase in hand samples is often identified by its polysynthetic crystal twinning or 'record-groove' effect.

<span class="mw-page-title-main">Rhyolite</span> Igneous, volcanic rock, of felsic (silica-rich) composition

Rhyolite is the most silica-rich of volcanic rocks. It is generally glassy or fine-grained (aphanitic) in texture, but may be porphyritic, containing larger mineral crystals (phenocrysts) in an otherwise fine-grained groundmass. The mineral assemblage is predominantly quartz, sanidine, and plagioclase. It is the extrusive equivalent to granite.

<span class="mw-page-title-main">Convergent boundary</span> Region of active deformation between colliding tectonic plates

A convergent boundary is an area on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other, a process known as subduction. The subduction zone can be defined by a plane where many earthquakes occur, called the Wadati–Benioff zone. These collisions happen on scales of millions to tens of millions of years and can lead to volcanism, earthquakes, orogenesis, destruction of lithosphere, and deformation. Convergent boundaries occur between oceanic-oceanic lithosphere, oceanic-continental lithosphere, and continental-continental lithosphere. The geologic features related to convergent boundaries vary depending on crust types.

<span class="mw-page-title-main">Dacite</span> Volcanic rock intermediate in composition between andesite and rhyolite

Dacite is a volcanic rock formed by rapid solidification of lava that is high in silica and low in alkali metal oxides. It has a fine-grained (aphanitic) to porphyritic texture and is intermediate in composition between andesite and rhyolite. It is composed predominantly of plagioclase feldspar and quartz.

<span class="mw-page-title-main">Trachyte</span> Extrusive igneous rock

Trachyte is an extrusive igneous rock composed mostly of alkali feldspar. It is usually light-colored and aphanitic (fine-grained), with minor amounts of mafic minerals, and is formed by the rapid cooling of lava enriched with silica and alkali metals. It is the volcanic equivalent of syenite.

<span class="mw-page-title-main">Phonolite</span> Uncommon extrusive rock

Phonolite is an uncommon shallow intrusive or extrusive rock, of intermediate chemical composition between felsic and mafic, with texture ranging from aphanitic (fine-grained) to porphyritic. Phonolite is a variation of the igneous rock trachyte that contains nepheline or leucite rather than quartz. It has an unusually high Na2O + K2O content, defining its position in the TAS classification of igneous rocks. Its coarse grained (phaneritic) intrusive equivalent is nepheline syenite. Phonolite is typically fine grained and compact. The name phonolite comes from the Ancient Greek meaning "sounding stone" due to the metallic sound it produces if an unfractured plate is hit; hence, the English name clinkstone is given as a synonym.

<span class="mw-page-title-main">Basanite</span> A silica-undersaturated basalt

Basanite is an igneous, volcanic (extrusive) rock with aphanitic to porphyritic texture. It is composed mostly of feldspathoids, pyroxenes, olivine, and plagioclase and forms from magma low in silica and enriched in alkali metal oxides that solidifies rapidly close to the Earth's surface.

<span class="mw-page-title-main">Volcanic rock</span> Rock formed from lava erupted from a volcano

Volcanic rock is a rock formed from lava erupted from a volcano. Like all rock types, the concept of volcanic rock is artificial, and in nature volcanic rocks grade into hypabyssal and metamorphic rocks and constitute an important element of some sediments and sedimentary rocks. For these reasons, in geology, volcanics and shallow hypabyssal rocks are not always treated as distinct. In the context of Precambrian shield geology, the term "volcanic" is often applied to what are strictly metavolcanic rocks. Volcanic rocks and sediment that form from magma erupted into the air are called "pyroclastics," and these are also technically sedimentary rocks.

<span class="mw-page-title-main">Lamprophyre</span> Ultrapotassic igneous rocks

Lamprophyres are uncommon, small-volume ultrapotassic igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks, and small intrusions. They are alkaline silica-undersaturated mafic or ultramafic rocks with high magnesium oxide, >3% potassium oxide, high sodium oxide, and high nickel and chromium.

<span class="mw-page-title-main">Lamproite</span> Ultrapotassic mantle-derived volcanic or subvolcanic rock

Lamproite is an ultrapotassic mantle-derived volcanic or subvolcanic rock. It has low CaO, Al2O3, Na2O, high K2O/Al2O3, a relatively high MgO content and extreme enrichment in incompatible elements.

<span class="mw-page-title-main">Trachyandesite</span> Extrusive igneous rock

Trachyandesite is an extrusive igneous rock with a composition between trachyte and andesite. It has little or no free quartz, but is dominated by sodic plagioclase and alkali feldspar. It is formed from the cooling of lava enriched in alkali metals and with an intermediate content of silica.

The calc-alkaline magma series is one of two main subdivisions of the subalkaline magma series, the other subalkaline magma series being the tholeiitic series. A magma series is a series of compositions that describes the evolution of a mafic magma, which is high in magnesium and iron and produces basalt or gabbro, as it fractionally crystallizes to become a felsic magma, which is low in magnesium and iron and produces rhyolite or granite. Calc-alkaline rocks are rich in alkaline earths and alkali metals and make up a major part of the crust of the continents.

<span class="mw-page-title-main">Leucitite</span>

Leucitite or leucite rock is an igneous rock containing leucite. It is scarce, many countries such as England being entirely without them. However, they are of wide distribution, occurring in every quarter of the globe. Taken collectively, they exhibit a considerable variety of types and are of great interest petrographically. For the presence of this mineral it is necessary that the silica percentage of the rock should be low, since leucite is incompatible with free quartz and reacts with it to form potassium feldspar. Because it weathers rapidly, leucite is most common in lavas of recent and Tertiary age, which have a fair amount of potassium, or at any rate have potassium equal to or greater than sodium; if sodium is abundant nepheline occurs rather than leucite.

<span class="mw-page-title-main">Cathedral Peak Granodiorite</span> Suite of intrusive rock in the Sierra Nevada

The Cathedral Peak Granodiorite (CPG) was named after its type locality, Cathedral Peak in Yosemite National Park, California. The granodiorite forms part of the Tuolumne Intrusive Suite, one of the four major intrusive suites within the Sierra Nevada. It has been assigned radiometric ages between 88 and 87 million years and therefore reached its cooling stage in the Coniacian.

<span class="mw-page-title-main">Igneous rock</span> Rock formed through the cooling and solidification of magma or lava

Igneous rock, or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rocks are formed through the cooling and solidification of magma or lava.

Choquelimpie is a 5,327 metres (17,477 ft) high volcano in Chile. It is constructed from several separate layers of andesite and dacite on top of Tertiary and Precambrian layers. The volcano was active over six million years ago, with the neighbouring volcano Ajoya active over seven million years ago. Since then, erosion and glacial activity have dramatically reduced the height of the volcano and excavated a central depression.

<span class="mw-page-title-main">La Negra Formation</span>

La Negra Formation is a geologic formation of Jurassic age, composed chiefly of volcanic and volcaniclastic rocks, located in the Coast Range of northern Chile. The formation originated in marine and continental (terrestrial) conditions, and bears evidence of submarine volcanism as well as large explosive eruptions. The volcanism of La Negra Formation is thought to have lasted for about five million years.

<span class="mw-page-title-main">Geology of Italy</span> Overview of the geology of Italy

The geology of Italy includes mountain ranges such as the Alps and the Apennines formed from the uplift of igneous and primarily marine sedimentary rocks all formed since the Paleozoic. Some active volcanoes are located in Insular Italy.

References

  1. Le Maitre, R.W. (editor) (2002). Igneous Rocks — A Classification and Glossary of Terms (2nd ed.). Cambridge: Cambridge University Press. p. 141. ISBN   0-521-66215-X.{{cite book}}: |author= has generic name (help)
  2. Gest, D. E. and A. R. McBirney, Genetic relations of shoshonitic and absarokitic magmas, Absaroka Mountains, Wyoming, Journal of Volcanology and Geothermal Research, Vol 6; issues 1-2, Sept 1979. pp 85-104
  3. Shoshonite: Webster's Online Dictionary Archived 2009-11-27 at the Wayback Machine
  4. Prostka, Harold J., Hybrid Origin of the Absarokite-Shoshonite-Banakite Series, Absaroka Volcanic Field, Wyoming, 1973 GSA Bulletin February, 1973 v. 84 no. 2 p. 697-702 abstract
  5. 1 2 3 4 Morrison, Gregg, 1980, Characteristics and tectonic settings of shoshonite rock association, Lithos, 13, 97-108
  6. 1 2 Müller D., Groves D.I. (2019) Potassic igneous rocks and associated gold-copper mineralization (5th ed.). Mineral Resource Reviews. Springer-Verlag Heidelberg, 398 pp
  7. Joplin, Germaine A., The shoshonite association: A review, Journal of the Geological Society of Australia, v. 15, #2, 1968, pp 275-294 DOI:10.1080/00167616808728699
  8. Peccerillo, Angelo (2017). Cenozoic Volcanism in the Tyrrhenian Sea Region (2nd ed.). Springer. p. 239. ISBN   978-3-319-42489-7.