TRAF1

Last updated
TRAF1
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases TRAF1 , EBI6, MGC:10353, TNF receptor associated factor 1
External IDs OMIM: 601711 MGI: 101836 HomoloGene: 4138 GeneCards: TRAF1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_005658
NM_001190945
NM_001190947

NM_009421
NM_001326601

RefSeq (protein)

NP_001177874
NP_001177876
NP_005649

NP_001313530
NP_033447

Location (UCSC) Chr 9: 120.9 – 120.93 Mb Chr 2: 34.83 – 34.85 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

TNF receptor-associated factor 1 is a protein that in humans is encoded by the TRAF1 gene. [5]

Contents

Function

The protein encoded by this gene is a member of the TNF receptor (TNFR) associated factor (TRAF) protein family. TRAF proteins associate with, and mediate the signal transduction from various receptors of the TNFR superfamily. This protein and TRAF2 form a heterodimeric complex, which is required for TNF-alpha-mediated activation of MAPK8/JNK and NF-kappaB. The protein complex formed by this protein and TRAF2 also interacts with IAP, and thus mediates the anti-apoptotic signals from TNF receptors. The expression of this protein can be induced by Epstein-Barr virus (EBV). EBV infection membrane protein 1 (LMP1) is found to interact with this and other TRAF proteins; this interaction is thought to link LMP1-mediated B lymphocyte transformation to the signal transduction from TNFR family receptors. [6] TRAF1 also functions as a negative regulator of inflammation by interfering with the linear ubiquitination of NEMO downstream of TLR signaling. [7] This explains why TRAF1 polymorphisms cause an increased risk for rheumatic diseases. [8]

Interactions

TRAF1 has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">Tumor necrosis factor</span> Protein

Tumor necrosis factor is an adipokine and a cytokine. TNF is a member of the TNF superfamily, which consists of various transmembrane proteins with a homologous TNF domain.

<span class="mw-page-title-main">CD30</span> Mammalian protein found in Homo sapiens

CD30, also known as TNFRSF8, is a cell membrane protein of the tumor necrosis factor receptor family and a tumor marker.

<span class="mw-page-title-main">RANK</span> Mammalian protein found in Homo sapiens

Receptor activator of nuclear factor κ B (RANK), also known as TRANCE receptor or TNFRSF11A, is a member of the tumor necrosis factor receptor (TNFR) molecular sub-family. RANK is the receptor for RANK-Ligand (RANKL) and part of the RANK/RANKL/OPG signaling pathway that regulates osteoclast differentiation and activation. It is associated with bone remodeling and repair, immune cell function, lymph node development, thermal regulation, and mammary gland development. Osteoprotegerin (OPG) is a decoy receptor for RANKL, and regulates the stimulation of the RANK signaling pathway by competing for RANKL. The cytoplasmic domain of RANK binds TRAFs 1, 2, 3, 5, and 6 which transmit signals to downstream targets such as NF-κB and JNK.

<span class="mw-page-title-main">CD134</span> Protein-coding gene in humans

Tumor necrosis factor receptor superfamily, member 4 (TNFRSF4), also known as CD134 and OX40 receptor, is a member of the TNFR-superfamily of receptors which is not constitutively expressed on resting naïve T cells, unlike CD28. OX40 is a secondary co-stimulatory immune checkpoint molecule, expressed after 24 to 72 hours following activation; its ligand, OX40L, is also not expressed on resting antigen presenting cells, but is following their activation. Expression of OX40 is dependent on full activation of the T cell; without CD28, expression of OX40 is delayed and of fourfold lower levels.

<span class="mw-page-title-main">TRAF6</span> Protein-coding gene in the species Homo sapiens

TRAF6 is a TRAF human protein.

<span class="mw-page-title-main">TRAF2</span> Protein-coding gene in humans

TNF receptor-associated factor 2 is a protein that in humans is encoded by the TRAF2 gene.

<span class="mw-page-title-main">TRADD</span> Protein-coding gene in the species Homo sapiens

Tumor necrosis factor receptor type 1-associated DEATH domain protein is a protein that in humans is encoded by the TRADD gene.

<span class="mw-page-title-main">Lymphotoxin beta receptor</span>

Lymphotoxin beta receptor (LTBR), also known as tumor necrosis factor receptor superfamily member 3 (TNFRSF3), is a cell surface receptor for lymphotoxin involved in apoptosis and cytokine release. It is a member of the tumor necrosis factor receptor superfamily.

<span class="mw-page-title-main">Tumor necrosis factor receptor 1</span> Membrane receptor protein found in humans

Tumor necrosis factor receptor 1 (TNFR1), also known as tumor necrosis factor receptor superfamily member 1A (TNFRSF1A) and CD120a, is a ubiquitous membrane receptor that binds tumor necrosis factor-alpha (TNFα).

<span class="mw-page-title-main">Baculoviral IAP repeat-containing protein 2</span> Protein-coding gene in the species Homo sapiens

Baculoviral IAP repeat-containing protein 2 is a protein that in humans is encoded by the BIRC2 gene.

<span class="mw-page-title-main">TRAF5</span> Protein-coding gene in the species Homo sapiens

TNF receptor-associated factor 5 is a protein that in humans is encoded by the TRAF5 gene.

<span class="mw-page-title-main">TRAF3</span> Protein-coding gene in the species Homo sapiens

TNF receptor-associated factor (TRAF3) is a protein that in humans is encoded by the TRAF3 gene.

<span class="mw-page-title-main">RIPK1</span> Enzyme found in humans

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions in a variety of cellular pathways related to both cell survival and death. In terms of cell death, RIPK1 plays a role in apoptosis and necroptosis. Some of the cell survival pathways RIPK1 participates in include NF-κB, Akt, and JNK.

<span class="mw-page-title-main">TNFAIP3</span> Protein-coding gene in the species Homo sapiens

Tumor necrosis factor, alpha-induced protein 3 or A20 is a protein that in humans is encoded by the TNFAIP3 gene.

<span class="mw-page-title-main">MAP3K14</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 14 also known as NF-kappa-B-inducing kinase (NIK) is an enzyme that in humans is encoded by the MAP3K14 gene.

<span class="mw-page-title-main">Herpesvirus entry mediator</span> Protein-coding gene in the species Homo sapiens

Herpesvirus entry mediator (HVEM), also known as tumor necrosis factor receptor superfamily member 14 (TNFRSF14), is a human cell surface receptor of the TNF-receptor superfamily.

<span class="mw-page-title-main">TANK (gene)</span> Protein-coding gene in the species Homo sapiens

TRAF family member-associated NF-kappa-B activator is a protein that in humans is encoded by the TANK gene.

<span class="mw-page-title-main">TRAF interacting protein</span> Protein-coding gene in the species Homo sapiens

TRAF-interacting protein is a protein that in humans is encoded by the TRAIP gene.

<span class="mw-page-title-main">Tumor necrosis factor receptor 2</span> Membrane receptor protein found in humans

Tumor necrosis factor receptor 2 (TNFR2), also known as tumor necrosis factor receptor superfamily member 1B (TNFRSF1B) and CD120b, is one of two membrane receptors that binds tumor necrosis factor-alpha (TNFα). Like its counterpart, tumor necrosis factor receptor 1 (TNFR1), the extracellular region of TNFR2 consists of four cysteine-rich domains which allow for binding to TNFα. TNFR1 and TNFR2 possess different functions when bound to TNFα due to differences in their intracellular structures, such as TNFR2 lacking a death domain (DD).

<span class="mw-page-title-main">MATH domain</span> Binding domain of TRAFs

The MATH domain, in molecular biology, is a binding domain that was defined originally by a region of homology between otherwise functionally unrelated domains, the intracellular TRAF-C domains of TRAF proteins and a C-terminal region of extracellular meprins A and B.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000056558 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000026875 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Rothe M, Wong SC, Henzel WJ, Goeddel DV (September 1994). "A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor". Cell. 78 (4): 681–92. doi:10.1016/0092-8674(94)90532-0. PMID   8069916. S2CID   28055231.
  6. "Entrez Gene: TRAF1 TNF receptor-associated factor 1".
  7. Abdul-Sater AA, Edilova MI, Clouthier DL, Mbanwi A, Kremmer E, Watts TH (2017). "The signaling adaptor TRAF1 negatively regulates Toll-like receptor signaling and this underlies its role in rheumatic disease". Nature Immunology. 18 (1): 26–35. doi:10.1038/ni.3618. PMID   27893701. S2CID   19487408.
  8. Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B, Liew A, Khalili H, Chandrasekaran A (2007-09-20). "TRAF1–C5 as a Risk Locus for Rheumatoid Arthritis — A Genomewide Study". New England Journal of Medicine. 357 (12): 1199–1209. doi:10.1056/NEJMoa073491. ISSN   0028-4793. PMC   2636867 . PMID   17804836.
  9. 1 2 Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC (Dec 1997). "The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases". EMBO J. 16 (23): 6914–25. doi:10.1093/emboj/16.23.6914. PMC   1170295 . PMID   9384571.
  10. 1 2 Li X, Yang Y, Ashwell JD (March 2002). "TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2". Nature. 416 (6878): 345–7. Bibcode:2002Natur.416..345L. doi:10.1038/416345a. PMID   11907583. S2CID   4325926.
  11. Shu HB, Takeuchi M, Goeddel DV (November 1996). "The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex". Proc. Natl. Acad. Sci. U.S.A. 93 (24): 13973–8. Bibcode:1996PNAS...9313973S. doi: 10.1073/pnas.93.24.13973 . PMC   19479 . PMID   8943045.
  12. Shu HB, Halpin DR, Goeddel DV (June 1997). "Casper is a FADD- and caspase-related inducer of apoptosis". Immunity. 6 (6): 751–63. doi: 10.1016/s1074-7613(00)80450-1 . PMID   9208847.
  13. Kataoka T, Budd RC, Holler N, Thome M, Martinon F, Irmler M, Burns K, Hahne M, Kennedy N, Kovacsovics M, Tschopp J (June 2000). "The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways". Curr. Biol. 10 (11): 640–8. doi: 10.1016/s0960-9822(00)00512-1 . PMID   10837247. S2CID   14819939.
  14. Micheau O, Tschopp J (July 2003). "Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes" (PDF). Cell. 114 (2): 181–90. doi:10.1016/s0092-8674(03)00521-x. PMID   12887920. S2CID   17145731.
  15. Leo E, Deveraux QL, Buchholtz C, Welsh K, Matsuzawa S, Stennicke HR, Salvesen GS, Reed JC (March 2001). "TRAF1 is a substrate of caspases activated during tumor necrosis factor receptor-alpha-induced apoptosis". J. Biol. Chem. 276 (11): 8087–93. doi: 10.1074/jbc.M009450200 . PMID   11098060.
  16. Oukka M, Kim ST, Lugo G, Sun J, Wu LC, Glimcher LH (January 2002). "A mammalian homolog of Drosophila schnurri, KRC, regulates TNF receptor-driven responses and interacts with TRAF2". Mol. Cell. 9 (1): 121–31. doi: 10.1016/s1097-2765(01)00434-8 . PMID   11804591.
  17. Galibert L, Tometsko ME, Anderson DM, Cosman D, Dougall WC (Dec 1998). "The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfamily". J. Biol. Chem. 273 (51): 34120–7. doi: 10.1074/jbc.273.51.34120 . PMID   9852070.
  18. Kim HH, Lee DE, Shin JN, Lee YS, Jeon YM, Chung CH, Ni J, Kwon BS, Lee ZH (January 1999). "Receptor activator of NF-kappaB recruits multiple TRAF family adaptors and activates c-Jun N-terminal kinase". FEBS Lett. 443 (3): 297–302. doi: 10.1016/s0014-5793(98)01731-1 . PMID   10025951. S2CID   46210019.
  19. Song HY, Rothe M, Goeddel DV (June 1996). "The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation". Proc. Natl. Acad. Sci. U.S.A. 93 (13): 6721–5. Bibcode:1996PNAS...93.6721S. doi: 10.1073/pnas.93.13.6721 . PMC   39093 . PMID   8692885.
  20. Heyninck K, Beyaert R (January 1999). "The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-kappaB activation at the level of TRAF6". FEBS Lett. 442 (2–3): 147–50. doi: 10.1016/s0014-5793(98)01645-7 . PMID   9928991. S2CID   19072203.
  21. Lee SY, Lee SY, Choi Y (April 1997). "TRAF-interacting protein (TRIP): a novel component of the tumor necrosis factor receptor (TNFR)- and CD30-TRAF signaling complexes that inhibits TRAF2-mediated NF-kappaB activation". J. Exp. Med. 185 (7): 1275–85. doi:10.1084/jem.185.7.1275. PMC   2196258 . PMID   9104814.
  22. Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B, Superti-Furga G (February 2004). "A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway". Nat. Cell Biol. 6 (2): 97–105. doi:10.1038/ncb1086. PMID   14743216. S2CID   11683986.
  23. Takeuchi M, Rothe M, Goeddel DV (August 1996). "Anatomy of TRAF2. Distinct domains for nuclear factor-kappaB activation and association with tumor necrosis factor signaling proteins". J. Biol. Chem. 271 (33): 19935–42. doi: 10.1074/jbc.271.33.19935 . PMID   8702708.
  24. 1 2 3 Abdul-Sater AA, Edilova MI, Clouthier DL, Mbanwi A, Kremmer E, Watts TH (November 2016). "The signaling adaptor TRAF1 negatively regulates Toll-like receptor signaling and this underlies its role in rheumatic disease". Nat. Immunol. 18 (1): 26–35. doi:10.1038/ni.3618. PMID   27893701. S2CID   19487408.

Further reading