Wiener algebra

Last updated

In mathematics, the Wiener algebra, named after Norbert Wiener and usually denoted by A(T), is the space of absolutely convergent Fourier series. [1] Here T denotes the circle group.

Contents

Banach algebra structure

The norm of a function f  A(T) is given by

where

is the nth Fourier coefficient of f. The Wiener algebra A(T) is closed under pointwise multiplication of functions. Indeed,

therefore

Thus the Wiener algebra is a commutative unitary Banach algebra. Also, A(T) is isomorphic to the Banach algebra l1(Z), with the isomorphism given by the Fourier transform.

Properties

The sum of an absolutely convergent Fourier series is continuous, so

where C(T) is the ring of continuous functions on the unit circle.

On the other hand an integration by parts, together with the Cauchy–Schwarz inequality and Parseval's formula, shows that

More generally,

for (see Katznelson (2004)).

Wiener's 1/f theorem

Wiener ( 1932 , 1933 ) proved that if f has absolutely convergent Fourier series and is never zero, then its reciprocal 1/f also has an absolutely convergent Fourier series. Many other proofs have appeared since then, including an elementary one by Newman  ( 1975 ).

Gelfand ( 1941 , 1941b ) used the theory of Banach algebras that he developed to show that the maximal ideals of A(T) are of the form

which is equivalent to Wiener's theorem.

See also

Notes

  1. Weisstein, Eric W.; Moslehian, M.S. "Wiener algebra". MathWorld .

Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well defined limit that is within the space.

Fourier transform Mathematical transform that expresses a function of time as a function of frequency

In mathematics, a Fourier transform (FT) is a mathematical transform that decomposes a function into its constituent frequencies, such as the expression of a musical chord in terms of the volumes and frequencies of its constituent notes. The term Fourier transform refers to both the frequency domain representation and the mathematical operation that associates the frequency domain representation to a function of time.

Fourier series Decomposition of periodic functions into sums of simpler sinusoidal forms

In mathematics, a Fourier series is a periodic function composed of harmonically related sinusoids, combined by a weighted summation. With appropriate weights, one cycle of the summation can be made to approximate an arbitrary function in that interval. As such, the summation is a synthesis of another function. The discrete-time Fourier transform is an example of Fourier series. The process of deriving the weights that describe a given function is a form of Fourier analysis. For functions on unbounded intervals, the analysis and synthesis analogies are Fourier transform and inverse transform.

In mathematics, an infinite series of numbers is said to converge absolutely if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number . Similarly, an improper integral of a function, , is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if

In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm.

In mathematics, the Gelfand representation in functional analysis has two related meanings:

Pontryagin duality Duality for locally compact abelian groups

In mathematics, specifically in harmonic analysis and the theory of topological groups, Pontryagin duality explains the general properties of the Fourier transform on locally compact abelian groups, such as , the circle, or finite cyclic groups. The Pontryagin duality theorem itself states that locally compact abelian groups identify naturally with their bidual.

In mathematics, the Fourier inversion theorem says that for many types of functions it is possible to recover a function from its Fourier transform. Intuitively it may be viewed as the statement that if we know all frequency and phase information about a wave then we may reconstruct the original wave precisely.

In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform. And conversely, the periodic summation of a function's Fourier transform is completely defined by discrete samples of the original function. The Poisson summation formula was discovered by Siméon Denis Poisson and is sometimes called Poisson resummation.

In mathematics, the question of whether the Fourier series of a periodic function converges to the given function is researched by a field known as classical harmonic analysis, a branch of pure mathematics. Convergence is not necessarily given in the general case, and certain criteria must be met for convergence to occur.

In Fourier analysis, a multiplier operator is a type of linear operator, or transformation of functions. These operators act on a function by altering its Fourier transform. Specifically they multiply the Fourier transform of a function by a specified function known as the multiplier or symbol. Occasionally, the term multiplier operator itself is shortened simply to multiplier. In simple terms, the multiplier reshapes the frequencies involved in any function. This class of operators turns out to be broad: general theory shows that a translation-invariant operator on a group which obeys some regularity conditions can be expressed as a multiplier operator, and conversely. Many familiar operators, such as translations and differentiation, are multiplier operators, although there are many more complicated examples such as the Hilbert transform.

In mathematics, Bochner's theorem characterizes the Fourier transform of a positive finite Borel measure on the real line. More generally in harmonic analysis, Bochner's theorem asserts that under Fourier transform a continuous positive-definite function on a locally compact abelian group corresponds to a finite positive measure on the Pontryagin dual group.

In mathematical analysis, Wiener's tauberian theorem is any of several related results proved by Norbert Wiener in 1932. They provide a necessary and sufficient condition under which any function in L1 or L2 can be approximated by linear combinations of translations of a given function.

The concept of an abstract Wiener space is mathematical construction developed by Leonard Gross to understand the structure of Gaussian measures on infinite-dimensional spaces. The construction emphasizes the fundamental role played by the Cameron–Martin space. The classical Wiener space is the prototypical example.

Fourier and related algebras occur naturally in the harmonic analysis of locally compact groups. They play an important role in the duality theories of these groups. The Fourier–Stieltjes algebra and the Fourier–Stieltjes transform on the Fourier algebra of a locally compact group were introduced by Pierre Eymard in 1964.

In mathematics, the term Beurling algebra is used for different algebras introduced by Arne Beurling (1949), usually it is an algebra of periodic functions with Fourier series

Hilbert space Inner product space that is metrically complete; a Banach space whose norm induces an inner product (The norm satisfies the parallelogram identity)

The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It extends the methods of vector algebra and calculus from the two-dimensional Euclidean plane and three-dimensional space to spaces with any finite or infinite number of dimensions. A Hilbert space is an abstract vector space possessing the structure of an inner product that allows length and angle to be measured. Furthermore, Hilbert spaces are complete: there are enough limits in the space to allow the techniques of calculus to be used.

Wiener–Lévy theorem is a theorem in Fourier analysis, which states that a function of an absolutely convergent Fourier series has an absolutely convergent Fourier series under some conditions. The theorem was named after Norbert Wiener and Paul Lévy.

In functional analysis, every C*-algebra is isomorphic to a subalgebra of the C*-algebra of bounded linear operators on some Hilbert space H. This article describes the spectral theory of closed normal subalgebras of .

This is a glossary for the terminology in a mathematical field of functional analysis.

References