Bubble laser

Last updated

An ordinary bubble can serve as an optofluidic laser. These bubble lasers have been made of dye-doped soap solutions and smectic liquid crystal. In a bubble laser, the bubble itself serves as the optical resonator. [1] Uniquely, bubble lasers exhibit hundreds of regularly spaced resonant frequencies called whispering gallery modes, named for the Whispering Gallery in St. Paul's Cathedral in London. [1] [2] Researchers have found that the emission spectrum of a bubble laser is highly dependent on the bubble's environment; changing ambient air pressure or electric fields changes the size of the bubble (the optical resonator), and therefore the wavelengths of laser emission. [3]

Contents

Description

In a soap bubble, thin-film interference and constant thickness variations produces swirling iridescence. Likewise, thickness variations in bubble lasers contribute to an unstable frequency spectrum, prompting scientists to look for alternative bubble liquids. Macro Photography of a soap bubble.jpg
In a soap bubble, thin-film interference and constant thickness variations produces swirling iridescence. Likewise, thickness variations in bubble lasers contribute to an unstable frequency spectrum, prompting scientists to look for alternative bubble liquids.

Bubble lasers have been made from soap solutions to which a few drops of fluorescent laser dye have been added. [1] The fluorescent dye acts as the gain medium. [3] When a pump laser is shone onto the bubble, the dye molecules are excited. The excited dye molecules emit photons. [1] The light propagates along the surface of the soap bubble, leading to wave interference that generates distinct, evenly-spaced optical resonances of the bubble (called whispering gallery modes). [3] [1] When photons, by chance, of the right frequencies are emitted into the whispering gallery modes, it stimulates other molecules to emit more matching photons, amplifying the light. [1]

A soap bubble's thickness is constantly changing due to freely flowing water inside the bubble. This results in an unstable lasing spectrum. More stable results were achieved when the bubbles were made of smectic liquid crystal, which is made entirely of organic liquid-crystal molecules. [1] These bubbles do not contain water, can be very thin, and can survive almost indefinitely. [3]

Applications

The spacing of whispering gallery modes is directly related to the bubble's circumference. [1] This means that bubble lasers may be used as pressure sensors. Bubble lasers have measured pressure changes as high as 100 bar (10,000 kPA) and as low as 1.5 Pa, an "exceptionally large" dynamic range, far outperforming other pressure sensors of comparable size. [2]

In the future, bubble lasers may be used to study thin films and phenomena such as Cavity optomechanics. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Fluorescence</span> Emission of light by a substance that has absorbed light

Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, than the absorbed radiation. A perceptible example of fluorescence occurs when the absorbed radiation is in the ultraviolet region of the electromagnetic spectrum, while the emitted light is in the visible region; this gives the fluorescent substance a distinct color that can only be seen when the substance has been exposed to UV light. Fluorescent materials cease to glow nearly immediately when the radiation source stops, unlike phosphorescent materials, which continue to emit light for some time after.

<span class="mw-page-title-main">Laser</span> Device which emits light via optical amplification

A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word laser is an anacronym that originated as an acronym for light amplification by stimulated emission of radiation. The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories, based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow.

<span class="mw-page-title-main">Laser construction</span>

A laser is constructed from three principal parts:

In physics, specifically statistical mechanics, a population inversion occurs while a system exists in a state in which more members of the system are in higher, excited states than in lower, unexcited energy states. It is called an "inversion" because in many familiar and commonly encountered physical systems, this is not possible. This concept is of fundamental importance in laser science because the production of a population inversion is a necessary step in the workings of a standard laser.

Spontaneous emission is the process in which a quantum mechanical system transits from an excited energy state to a lower energy state and emits a quantized amount of energy in the form of a photon. Spontaneous emission is ultimately responsible for most of the light we see all around us; it is so ubiquitous that there are many names given to what is essentially the same process. If atoms are excited by some means other than heating, the spontaneous emission is called luminescence. For example, fireflies are luminescent. And there are different forms of luminescence depending on how excited atoms are produced. If the excitation is effected by the absorption of radiation the spontaneous emission is called fluorescence. Sometimes molecules have a metastable level and continue to fluoresce long after the exciting radiation is turned off; this is called phosphorescence. Figurines that glow in the dark are phosphorescent. Lasers start via spontaneous emission, then during continuous operation work by stimulated emission.

<span class="mw-page-title-main">Dye laser</span> Equipment using an organic dye to emit coherent light

A dye laser is a laser that uses an organic dye as the lasing medium, usually as a liquid solution. Compared to gases and most solid state lasing media, a dye can usually be used for a much wider range of wavelengths, often spanning 50 to 100 nanometers or more. The wide bandwidth makes them particularly suitable for tunable lasers and pulsed lasers. The dye rhodamine 6G, for example, can be tuned from 635 nm (orangish-red) to 560 nm (greenish-yellow), and produce pulses as short as 16 femtoseconds. Moreover, the dye can be replaced by another type in order to generate an even broader range of wavelengths with the same laser, from the near-infrared to the near-ultraviolet, although this usually requires replacing other optical components in the laser as well, such as dielectric mirrors or pump lasers.

The term biophotonics denotes a combination of biology and photonics, with photonics being the science and technology of generation, manipulation, and detection of photons, quantum units of light. Photonics is related to electronics and photons. Photons play a central role in information technologies, such as fiber optics, the way electrons do in electronics.

<span class="mw-page-title-main">Fluorophore</span> Agents that emit light after excitation by light

A fluorophore is a fluorescent chemical compound that can re-emit light upon light excitation. Fluorophores typically contain several combined aromatic groups, or planar or cyclic molecules with several π bonds.

In chemistry, chromism is a process that induces a change, often reversible, in the colors of compounds. In most cases, chromism is based on a change in the electron states of molecules, especially the π- or d-electron state, so this phenomenon is induced by various external stimuli which can alter the electron density of substances. It is known that there are many natural compounds that have chromism, and many artificial compounds with specific chromism have been synthesized to date. It is usually synonymous with chromotropism, the (reversible) change in color of a substance due to the physical and chemical properties of its ambient surrounding medium, such as temperature and pressure, light, solvent, and presence of ions and electrons.

<span class="mw-page-title-main">Optical microcavity</span>

An optical microcavity or microresonator is a structure formed by reflecting faces on the two sides of a spacer layer or optical medium, or by wrapping a waveguide in a circular fashion to form a ring. The former type is a standing wave cavity, and the latter is a traveling wave cavity. The name microcavity stems from the fact that it is often only a few micrometers thick, the spacer layer sometimes even in the nanometer range. As with common lasers, this forms an optical cavity or optical resonator, allowing a standing wave to form inside the spacer layer or a traveling wave that goes around in the ring.

<span class="mw-page-title-main">Two-photon excitation microscopy</span> Fluorescence imaging technique

Two-photon excitation microscopy is a fluorescence imaging technique that is particularly well-suited to image scattering living tissue of up to about one millimeter in thickness. Unlike traditional fluorescence microscopy, where the excitation wavelength is shorter than the emission wavelength, two-photon excitation requires simultaneous excitation by two photons with longer wavelength than the emitted light. The laser is focused onto a specific location in the tissue and scanned across the sample to sequentially produce the image. Due to the non-linearity of two-photon excitation, mainly fluorophores in the micrometer-sized focus of the laser beam are excited, which results in the spatial resolution of the image. This contrasts with confocal microscopy, where the spatial resolution is produced by the interaction of excitation focus and the confined detection with a pinhole.

Ultrafast laser spectroscopy is a category of spectroscopic techniques using ultrashort pulse lasers for the study of dynamics on extremely short time scales. Different methods are used to examine the dynamics of charge carriers, atoms, and molecules. Many different procedures have been developed spanning different time scales and photon energy ranges; some common methods are listed below.

<span class="mw-page-title-main">Doppler cooling</span> Laser cooling technique

Doppler cooling is a mechanism that can be used to trap and slow the motion of atoms to cool a substance. The term is sometimes used synonymously with laser cooling, though laser cooling includes other techniques.

<span class="mw-page-title-main">Sound amplification by stimulated emission of radiation</span>

Sound amplification by stimulated emission of radiation (SASER) refers to a device that emits acoustic radiation. It focuses sound waves in a way that they can serve as accurate and high-speed carriers of information in many kinds of applications—similar to uses of laser light.

<span class="mw-page-title-main">Fluorescence in the life sciences</span> Scientific investigative technique

Fluorescence is used in the life sciences generally as a non-destructive way of tracking or analysing biological molecules. Some proteins or small molecules in cells are naturally fluorescent, which is called intrinsic fluorescence or autofluorescence. Alternatively, specific or general proteins, nucleic acids, lipids or small molecules can be "labelled" with an extrinsic fluorophore, a fluorescent dye which can be a small molecule, protein or quantum dot. Several techniques exist to exploit additional properties of fluorophores, such as fluorescence resonance energy transfer, where the energy is passed non-radiatively to a particular neighbouring dye, allowing proximity or protein activation to be detected; another is the change in properties, such as intensity, of certain dyes depending on their environment allowing their use in structural studies.

Photoelectrochemical processes are processes in photoelectrochemistry; they usually involve transforming light into other forms of energy. These processes apply to photochemistry, optically pumped lasers, sensitized solar cells, luminescence, and photochromism.

A liquid-crystal laser is a laser that uses a liquid crystal as the resonator cavity, allowing selection of emission wavelength and polarization from the active laser medium. The lasing medium is usually a dye doped into the liquid crystal. Liquid-crystal lasers are comparable in size to diode lasers, but provide the continuous wide spectrum tunability of dye lasers while maintaining a large coherence area. The tuning range is typically several tens of nanometers. Self-organization at micrometer scales reduces manufacturing complexity compared to using layered photonic metamaterials. Operation may be either in continuous wave mode or in pulsed mode.

<span class="mw-page-title-main">Whispering-gallery wave</span> Wave that can travel around a concave surface

Whispering-gallery waves, or whispering-gallery modes, are a type of wave that can travel around a concave surface. Originally discovered for sound waves in the whispering gallery of St Paul's Cathedral, they can exist for light and for other waves, with important applications in nondestructive testing, lasing, cooling and sensing, as well as in astronomy.

Photonic molecules are a form of matter in which photons bind together to form "molecules". They were first predicted in 2007. Photonic molecules are formed when individual (massless) photons "interact with each other so strongly that they act as though they have mass". In an alternative definition, photons confined to two or more coupled optical cavities also reproduce the physics of interacting atomic energy levels, and have been termed as photonic molecules.

References

  1. 1 2 3 4 5 6 7 8 9 Miller, Johanna. "Bubble lasers can be sturdy and sensitive". Physics Today. American Institute of Physics. Retrieved 2 April 2024.
  2. 1 2 3 Korenjak, Zala (5 January 2024). "Smectic and Soap Bubble Optofluidic Lasers". Physical Review X. 14 (1): 011002. doi:10.1103/PhysRevX.14.011002 . Retrieved 2 April 2024.
  3. 1 2 3 4 Popa, Stefan. "Soap bubbles transform into lasers". Physics World. Institute of Physics. Retrieved 6 April 2024.