Cyclohexene

Last updated
Cyclohexene
Olefine am Beispiel von Cycloalken-v2.svg
Cyclohexene for highscool.svg
Cyclohexene-conformation-2D-skeletal.png
Cyclohexene-from-xtal-3D-bs-17.png
Names
Preferred IUPAC name
Cyclohexene
Other names
Tetrahydrobenzene, 1,2,3,4-Tetrahydrobenzene, Benzenetetrahydride, Cyclohex-1-ene, Hexanaphthylene, UN 2256
Identifiers
3D model (JSmol)
906737
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.462 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 203-807-8
1659
PubChem CID
RTECS number
  • GW2500000
UNII
  • InChI=1S/C6H10/c1-2-4-6-5-3-1/h1-2H,3-6H2 Yes check.svgY
    Key: HGCIXCUEYOPUTN-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C6H10/c1-2-4-6-5-3-1/h1-2H,3-6H2
    Key: HGCIXCUEYOPUTN-UHFFFAOYAQ
  • C1CCC=CC1
Properties
C6H10
Molar mass 82.143 g/mol
Appearancecolorless liquid
Odor sweet
Density 0.8110 g/cm3
Melting point −103.5 °C (−154.3 °F; 169.7 K)
Boiling point 82.98 °C (181.36 °F; 356.13 K)
slightly soluble in water
Solubility miscible with organic solvents
Vapor pressure 8.93 kPa (20 °C)

11.9 kPa (25 °C)

0.022 mol·kg−1·bar−1
-57.5·10−6 cm3/mol
1.4465
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-skull.svg GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H225, H302, H305, H311, H411
P210, P233, P240, P241, P242, P243, P264, P270, P273, P280, P301+P310, P301+P312, P302+P352, P303+P361+P353, P312, P322, P330, P331, P361, P363, P370+P378, P391, P403+P235, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
3
0
Flash point −12 °C (10 °F; 261 K)
244 °C (471 °F; 517 K)
Explosive limits 0.8–5 %
Lethal dose or concentration (LD, LC):
1407 mg/kg (oral, rat)
13,196 ppm (mouse, 2 hr) [1]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 300 ppm (1015 mg/m3) [2]
REL (Recommended)
TWA 300 ppm (1015 mg/m3) [2]
IDLH (Immediate danger)
2000 ppm [2]
Safety data sheet (SDS) External MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Cyclohexene is a hydrocarbon with the formula (CH2)4C2H2. It is an example of a cycloalkene. At room temperature, cyclohexene a colorless liquid with a sharp odor. It has few practical applications.

Contents

Production and uses

Cyclohexene is produced by the partial hydrogenation of benzene, a process developed by the Asahi Chemical company. [3] The main product of the process is cyclohexane because cyclohexene is more easily hydrogenated than benzene.

In the laboratory, it can be prepared by dehydration of cyclohexanol. [4]

C6H11OH → C6H10 + H2O

Reactions and uses

Benzene is converted to cyclohexylbenzene by acid-catalyzed alkylation with cyclohexene. [5] Cyclohexylbenzene is a precursor to both phenol and cyclohexanone. [6]

Hydration of cyclohexene gives cyclohexanol, which can be dehydrogenated to give cyclohexanone, a precursor to caprolactam. [7]

The oxidative cleavage of cyclohexene gives adipic acid. Hydrogen peroxide is used as the oxidant in the presence of a tungsten catalyst. [8]

Bromination gives 1,2-dibromocyclohexane. [9]

Structure

Cyclohexene is most stable in a half-chair conformation, [10] unlike the preference for a chair form of cyclohexane. One basis for the cyclohexane conformational preference for a chair is that it allows each bond of the ring to adopt a staggered conformation. For cyclohexene, however, the alkene is planar, equivalent to an eclipsed conformation at that bond.

See also

Related Research Articles

Cyclohexane is a cycloalkane with the molecular formula C6H12. Cyclohexane is non-polar. Cyclohexane is a colourless, flammable liquid with a distinctive detergent-like odor, reminiscent of cleaning products. Cyclohexane is mainly used for the industrial production of adipic acid and caprolactam, which are precursors to nylon.

Furan is a heterocyclic organic compound, consisting of a five-membered aromatic ring with four carbon atoms and one oxygen atom. Chemical compounds containing such rings are also referred to as furans.

<span class="mw-page-title-main">Cyclohexanol</span> Chemical compound

Cyclohexanol is the organic compound with the formula HOCH(CH2)5. The molecule is related to cyclohexane by replacement of one hydrogen atom by a hydroxyl group. This compound exists as a deliquescent colorless solid with a camphor-like odor, which, when very pure, melts near room temperature. Millions of tonnes are produced annually, mainly as a precursor to nylon.

Cyclohexa-1,3-diene (also known as Benzane) is an organic compound with the formula (C2H4)(CH)4. It is a colorless, flammable liquid. Its refractive index is 1.475 (20 °C, D). It is one of two isomers of cyclohexadiene, the other being 1,4-cyclohexadiene.

<span class="mw-page-title-main">Adipic acid</span> Chemical compound

Adipic acid or hexanedioic acid is the organic compound with the formula (CH2)4(COOH)2. From an industrial perspective, it is the most important dicarboxylic acid: about 2.5 billion kilograms of this white crystalline powder are produced annually, mainly as a precursor for the production of nylon. Adipic acid otherwise rarely occurs in nature, but it is known as manufactured E number food additive E355. Salts and esters of adipic acid are known as adipates.

<span class="mw-page-title-main">Diisopropyl ether</span> Chemical compound

Diisopropyl ether is a secondary ether that is used as a solvent. It is a colorless liquid that is slightly soluble in water, but miscible with organic solvents. It is used as an extractant and an oxygenate gasoline additive. It is obtained industrially as a byproduct in the production of isopropanol by hydration of propylene. Diisopropyl ether is sometimes represented by the abbreviation DIPE.

<span class="mw-page-title-main">Cyclohexanone</span> Chemical compound

Cyclohexanone is the organic compound with the formula (CH2)5CO. The molecule consists of six-carbon cyclic molecule with a ketone functional group. This colorless oily liquid has a sweet odor reminiscent of benzaldehyde. Over time, samples of cyclohexanone assume a pale yellow color. Cyclohexanone is slightly soluble in water and miscible with common organic solvents. Billions of kilograms are produced annually, mainly as a precursor to nylon.

<i>tert</i>-Butyl alcohol Chemical compound

tert-Butyl alcohol is the simplest tertiary alcohol, with a formula of (CH3)3COH (sometimes represented as t-BuOH). Its isomers are 1-butanol, isobutanol, and butan-2-ol. tert-Butyl alcohol is a colorless solid, which melts near room temperature and has a camphor-like odor. It is miscible with water, ethanol and diethyl ether.

<span class="mw-page-title-main">Copper chromite</span> Chemical compound

Copper chromite is an inorganic compound with the formula Cu2Cr2O5. It is a black solid that is used to catalyze reactions in organic synthesis.

<span class="mw-page-title-main">Pimelic acid</span> Chemical compound

Pimelic acid is the organic compound with the formula HO2C(CH2)5CO2H. Pimelic acid is one CH
2
unit
longer than a related dicarboxylic acid, adipic acid, a precursor to many polyesters and polyamides. However compared to adipic acid, pimelic acid is relatively small in importance industrially. Derivatives of pimelic acid are involved in the biosynthesis of the amino acid lysine and the vitamin biotin.

<i>o</i>-Xylene Chemical compound

o-Xylene (ortho-xylene) is an aromatic hydrocarbon with the formula C6H4(CH3)2, with two methyl substituents bonded to adjacent carbon atoms of a benzene ring (the ortho configuration). It is a constitutional isomer of m-xylene and p-xylene, the mixture being called xylene or xylenes. o-Xylene is a colourless slightly oily flammable liquid.

<span class="mw-page-title-main">1,4-Benzoquinone</span> Chemical compound

1,4-Benzoquinone, commonly known as para-quinone, is a chemical compound with the formula C6H4O2. In a pure state, it forms bright-yellow crystals with a characteristic irritating odor, resembling that of chlorine, bleach, and hot plastic or formaldehyde. This six-membered ring compound is the oxidized derivative of 1,4-hydroquinone. The molecule is multifunctional: it exhibits properties of a ketone, being able to form oximes; an oxidant, forming the dihydroxy derivative; and an alkene, undergoing addition reactions, especially those typical for α,β-unsaturated ketones. 1,4-Benzoquinone is sensitive toward both strong mineral acids and alkali, which cause condensation and decomposition of the compound.

2-Chloroethanol (also called ethylene chlorohydrin or glycol chlorohydrin) is an organic chemical compound with the chemical formula HOCH2CH2Cl and the simplest beta-halohydrin (chlorohydrin). This colorless liquid has a pleasant ether-like odor. It is miscible with water. The molecule is bifunctional, consisting of both an alkyl chloride and an alcohol functional group.

<span class="mw-page-title-main">Dimethoxymethane</span> Chemical compound

Dimethoxymethane, also called methylal, is a colorless flammable liquid with a low boiling point, low viscosity and excellent dissolving power. It has a chloroform-like odor and a pungent taste. It is the dimethyl acetal of formaldehyde. Dimethoxymethane is soluble in three parts water and miscible with most common organic solvents.

<span class="mw-page-title-main">Vinyl bromide</span> Chemical compound

Vinyl bromide is the organobromine compound with the formula CH2=CHBr. Classified as a vinyl halide, it is a colorless gas at room temperature. It is used as a reagent and a comonomer.

<span class="mw-page-title-main">Cyclohexenone</span> Chemical compound

Cyclohexenone is an organic compound which is a versatile intermediate used in the synthesis of a variety of chemical products such as pharmaceuticals and fragrances. It is colorless liquid, but commercial samples are often yellow.

<span class="mw-page-title-main">Chloroacetaldehyde</span> Chemical compound

Chloroacetaldehyde is an organic compound with the formula ClCH2CHO. Like some related compounds, it is highly electrophilic reagent and a potentially dangerous alkylating agent. The compound is not normally encountered in the anhydrous form, but rather as the hemiacetal (ClCH2CH(OH))2O.

4-Nitrotoluene or para-nitrotoluene is an organic compound with the formula CH3C6H4NO2. It is a pale yellow solid. It is one of three isomers of nitrotoluene.

<i>m</i>-Xylylenediamine Chemical compound

m-Xylylenediamine is an organic compound with the formula C6H4(CH2NH2)2. A colorless oily liquid, it is produced by hydrogenation of isophthalonitrile.

<span class="mw-page-title-main">Cyclohexylbenzene</span> Chemical compound

Cyclohexylbenzene is the organic compound with the structural formula C6H5−C6H11. It is a derivative of benzene with a cyclohexyl substituent (C6H11). It is a colorless liquid.

References

  1. "Cyclohexene". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  2. 1 2 3 NIOSH Pocket Guide to Chemical Hazards. "#0167". National Institute for Occupational Safety and Health (NIOSH).
  3. US 9771313,Narisawa, Naoki&Tanaka, Katsutoshi,"Cyclohexanol, method for producing cyclohexanol, and method for producing adipic acid",published 26 Sep 2017
  4. G. H. Coleman, H. F. Johnstone (1925). "Cyclohexene". Organic Syntheses. 5: 33. doi:10.15227/orgsyn.005.0033.
  5. B. B. Corson, V. N. Ipatieff (1939). "Cyclohexylbenzene". Organic Syntheses. 19: 36. doi:10.15227/orgsyn.019.0036.
  6. Plotkin, Jeffrey S. (2016-03-21). "What's New in Phenol Production?". American Chemical Society. Archived from the original on 2019-10-27. Retrieved 2018-01-02.
  7. Musser, Michael T. (2005). "Cyclohexanol and Cyclohexanone". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a08_217. ISBN   978-3527306732.
  8. Reed, Scott M.; Hutchison, James E. (2000). "Green Chemistry in the Organic Teaching Laboratory: An Environmentally Benign Synthesis of Adipic Acid". J. Chem. Educ. 77 (12): 1627–1629. Bibcode:2000JChEd..77.1627R. doi:10.1021/ed077p1627.
  9. H. R. Snyder, L. A. Brooks (1932). "1,2-Dibromocyclohexane". Organic Syntheses. 12: 26. doi:10.15227/orgsyn.012.0026.
  10. Jensen, Frederick R.; Bushweller, C. Hackett (1969). "Conformational preferences and interconversion barriers in cyclohexene and derivatives". J. Am. Chem. Soc. 91 (21): 5774–5782. doi:10.1021/ja01049a013.