Ferroelectricity

Last updated

Ferroelectricity is a characteristic of certain materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field. [1] [2] All ferroelectrics are also piezoelectric and pyroelectric, with the additional property that their natural electrical polarization is reversible. The term is used in analogy to ferromagnetism, in which a material exhibits a permanent magnetic moment. Ferromagnetism was already known when ferroelectricity was discovered in 1920 in Rochelle salt by Joseph Valasek. [3] Thus, the prefix ferro, meaning iron, was used to describe the property despite the fact that most ferroelectric materials do not contain iron. Materials that are both ferroelectric and ferromagnetic are known as multiferroics.

Contents

Polarization

Linear dielectric polarization Dielectric polarisation.svg
Linear dielectric polarization
Paraelectric polarization Paraelectric polarisation DE.svg
Paraelectric polarization
Ferroelectric polarization Ferroelectric polarisation DE.svg
Ferroelectric polarization

When most materials are electrically polarized, the polarization induced, P, is almost exactly proportional to the applied external electric field E; so the polarization is a linear function. This is called linear dielectric polarization (see figure). Some materials, known as paraelectric materials, [4] show a more enhanced nonlinear polarization (see figure). The electric permittivity, corresponding to the slope of the polarization curve, is not constant as in linear dielectrics but is a function of the external electric field.

In addition to being nonlinear, ferroelectric materials demonstrate a spontaneous nonzero polarization (after entrainment, see figure) even when the applied field E is zero. The distinguishing feature of ferroelectrics is that the spontaneous polarization can be reversed by a suitably strong applied electric field in the opposite direction; the polarization is therefore dependent not only on the current electric field but also on its history, yielding a hysteresis loop. They are called ferroelectrics by analogy to ferromagnetic materials, which have spontaneous magnetization and exhibit similar hysteresis loops.

Typically, materials demonstrate ferroelectricity only below a certain phase transition temperature, called the Curie temperature (TC) and are paraelectric above this temperature: the spontaneous polarization vanishes, and the ferroelectric crystal transforms into the paraelectric state. Many ferroelectrics lose their pyroelectric properties above TC completely, because their paraelectric phase has a centrosymmetric crystal structure. [5]

Applications

The nonlinear nature of ferroelectric materials can be used to make capacitors with adjustable capacitance. Typically, a ferroelectric capacitor simply consists of a pair of electrodes sandwiching a layer of ferroelectric material. The permittivity of ferroelectrics is not only adjustable but commonly also very high, especially when close to the phase transition temperature. Because of this, ferroelectric capacitors are small in physical size compared to dielectric (non-tunable) capacitors of similar capacitance.

The spontaneous polarization of ferroelectric materials implies a hysteresis effect which can be used as a memory function, and ferroelectric capacitors are indeed used to make ferroelectric RAM [6] for computers and RFID cards. In these applications thin films of ferroelectric materials are typically used, as this allows the field required to switch the polarization to be achieved with a moderate voltage. However, when using thin films a great deal of attention needs to be paid to the interfaces, electrodes and sample quality for devices to work reliably. [7]

Ferroelectric materials are required by symmetry considerations to be also piezoelectric and pyroelectric. The combined properties of memory, piezoelectricity, and pyroelectricity make ferroelectric capacitors very useful, e.g. for sensor applications. Ferroelectric capacitors are used in medical ultrasound machines (the capacitors generate and then listen for the ultrasound ping used to image the internal organs of a body), high quality infrared cameras (the infrared image is projected onto a two dimensional array of ferroelectric capacitors capable of detecting temperature differences as small as millionths of a degree Celsius), fire sensors, sonar, vibration sensors, and even fuel injectors on diesel engines.

Another idea of recent interest is the ferroelectric tunnel junction (FTJ) in which a contact is made up by nanometer-thick ferroelectric film placed between metal electrodes. [8] The thickness of the ferroelectric layer is small enough to allow tunneling of electrons. The piezoelectric and interface effects as well as the depolarization field may lead to a giant electroresistance (GER) switching effect.

Yet another burgeoning application is multiferroics, where researchers are looking for ways to couple magnetic and ferroelectric ordering within a material or heterostructure; there are several recent reviews on this topic. [9]

Catalytic properties of ferroelectrics have been studied since 1952 when Parravano observed anomalies in CO oxidation rates over ferroelectric sodium and potassium niobates near the Curie temperature of these materials. [10] Surface-perpendicular component of the ferroelectric polarization can dope polarization-dependent charges on surfaces of ferroelectric materials, changing their chemistry. [11] [12] [13] This opens the possibility of performing catalysis beyond the limits of the Sabatier principle. [14] Sabatier principle states that the surface-adsorbates interaction has to be an optimal amount: not too weak to be inert toward the reactants and not too strong to poison the surface and avoid desorption of the products: a compromise situation. [15] This set of optimum interactions is usually referred to as "top of the volcano" in activity volcano plots. [16] On the other hand, ferroelectric polarization-dependent chemistry can offer the possibility of switching the surface—adsorbates interaction from strong adsorption to strong desorption, thus a compromise between desorption and adsorption is no longer needed. [14] Ferroelectric polarization can also act as an energy harvester. [17] Polarization can help the separation of photo-generated electron-hole pairs, leading to enhanced photocatalysis. [18] Also, due to pyroelectric and piezoelectric effects under varying temperature (heating/cooling cycles) [19] [20] or varying strain (vibrations) conditions [21] extra charges can appear on the surface and drive various (electro)chemical reactions forward.

Photoferroelectric imaging is a technique to record optical information on pieces of ferroelectric material. The images are nonvolatile and selectively erasable. [22]

Materials

The internal electric dipoles of a ferroelectric material are coupled to the material lattice so anything that changes the lattice will change the strength of the dipoles (in other words, a change in the spontaneous polarization). The change in the spontaneous polarization results in a change in the surface charge. This can cause current flow in the case of a ferroelectric capacitor even without the presence of an external voltage across the capacitor. Two stimuli that will change the lattice dimensions of a material are force and temperature. The generation of a surface charge in response to the application of an external stress to a material is called piezoelectricity. A change in the spontaneous polarization of a material in response to a change in temperature is called pyroelectricity.

Generally, there are 230 space groups among which 32 crystalline classes can be found in crystals. There are 21 non-centrosymmetric classes, within which 20 are piezoelectric. Among the piezoelectric classes, 10 have a spontaneous electric polarization which varies with temperature; thus they are pyroelectric. Ferroelectricity is a subset of pyroelectricity, which brings spontaneous electronic polarization to the material. [23]

32 Crystalline classes
21 noncentrosymmetric11 centrosymmetric
20 classes piezoelectric non piezoelectric
10 classes pyroelectric non pyroelectric
ferroelectricnon ferroelectric
e.g. : PbZr/TiO3, BaTiO 3, PbTiO 3, AlN [24] e.g. : Tourmaline, ZnO,e.g. : Quartz, Langasite

Ferroelectric phase transitions are often characterized as either displacive (such as BaTiO3) or order-disorder (such as NaNO2), though often phase transitions will demonstrate elements of both behaviors. In barium titanate, a typical ferroelectric of the displacive type, the transition can be understood in terms of a polarization catastrophe, in which, if an ion is displaced from equilibrium slightly, the force from the local electric fields due to the ions in the crystal increases faster than the elastic-restoring forces. This leads to an asymmetrical shift in the equilibrium ion positions and hence to a permanent dipole moment. The ionic displacement in barium titanate concerns the relative position of the titanium ion within the oxygen octahedral cage. In lead titanate, another key ferroelectric material, although the structure is rather similar to barium titanate the driving force for ferroelectricity is more complex with interactions between the lead and oxygen ions also playing an important role. In an order-disorder ferroelectric, there is a dipole moment in each unit cell, but at high temperatures they are pointing in random directions. Upon lowering the temperature and going through the phase transition, the dipoles order, all pointing in the same direction within a domain.

An important ferroelectric material for applications is lead zirconate titanate (PZT), which is part of the solid solution formed between ferroelectric lead titanate and anti-ferroelectric lead zirconate. Different compositions are used for different applications; for memory applications, PZT closer in composition to lead titanate is preferred, whereas piezoelectric applications make use of the diverging piezoelectric coefficients associated with the morphotropic phase boundary that is found close to the 50/50 composition.

Ferroelectric crystals often show several transition temperatures and domain structure hysteresis, much as do ferromagnetic crystals. The nature of the phase transition in some ferroelectric crystals is still not well understood.

In 1974 R.B. Meyer used symmetry arguments to predict ferroelectric liquid crystals, [25] and the prediction could immediately be verified by several observations of behavior connected to ferroelectricity in smectic liquid-crystal phases that are chiral and tilted. The technology allows the building of flat-screen monitors. Mass production between 1994 and 1999 was carried out by Canon. Ferroelectric liquid crystals are used in production of reflective LCoS.

In 2010 David Field found that prosaic films of chemicals such as nitrous oxide or propane exhibited ferroelectric properties. [26] This new class of ferroelectric materials exhibit "spontelectric" properties, and may have wide-ranging applications in device and nano-technology and also influence the electrical nature of dust in the interstellar medium.

Other ferroelectric materials used include triglycine sulfate, polyvinylidene fluoride (PVDF) and lithium tantalate. [27] A single atom thick ferroelectric monolayer can be created using pure bismuth. [28]

It should be possible to produce materials which combine both ferroelectric and metallic properties simultaneously, at room temperature. [29] According to research published in 2018 in Nature Communications, [30] scientists were able to produce a two-dimensional sheet of material which was both ferroelectric (had a polar crystal structure) and which conducted electricity.

Theory

An introduction to Landau theory can be found here. [31] Based on Ginzburg–Landau theory, the free energy of a ferroelectric material, in the absence of an electric field and applied stress may be written as a Taylor expansion in terms of the order parameter, P. If a sixth order expansion is used (i.e. 8th order and higher terms truncated), the free energy is given by:

where Px, Py, and Pz are the components of the polarization vector in the x, y, and z directions respectively, and the coefficients, must be consistent with the crystal symmetry. To investigate domain formation and other phenomena in ferroelectrics, these equations are often used in the context of a phase field model. Typically, this involves adding a gradient term, an electrostatic term and an elastic term to the free energy. The equations are then discretized onto a grid using the finite difference method or finite element method and solved subject to the constraints of Gauss's law and Linear elasticity.

In all known ferroelectrics, and . These coefficients may be obtained experimentally or from ab-initio simulations. For ferroelectrics with a first order phase transition, , whereas for a second order phase transition.

The spontaneous polarization, Ps of a ferroelectric for a cubic to tetragonal phase transition may be obtained by considering the 1D expression of the free energy which is:

This free energy has the shape of a double well potential with two free energy minima at , the spontaneous polarization. We find the derivative of the free energy, and set it equal to zero in order to solve for :

Since the Ps = 0 solution of this equation rather corresponds to a free energy maxima in the ferroelectric phase, the desired solutions for Ps correspond to setting the remaining factor to zero:

whose solution is:

and eliminating solutions which take the square root of a negative number (for either the first or second order phase transitions) gives:

If , the solution for the spontaneous polarization reduces to:

The hysteresis loop (Px versus Ex) may be obtained from the free energy expansion by including the term -Ex Px corresponding to the energy due to an external electric field Ex interacting with the polarization Px, as follows:

We find the stable polarization values of Pxunder the influence of the external field, now denoted as Pe, again by setting the derivative of the energy with respect to Px to zero:

Plotting Ex (on the X axis) as a function of Pe (but on the Y axis) gives an S-shaped curve which is multi-valued in Pe for some values of Ex. The central part of the 'S' corresponds to a free energy local maximum (since ). Elimination of this region, and connection of the top and bottom portions of the 'S' curve by vertical lines at the discontinuities gives the hysteresis loop of internal polarization due to an external electric field.

Sliding ferroelectricity

Sliding ferroelectricity is widely found but only in two-dimensional (2D) van der Waals stacked layers. The vertical electric polarization is switched by in-plane interlayer sliding. [32]

See also

Related Research Articles

<span class="mw-page-title-main">Piezoelectricity</span> Electric charge generated in certain solids due to mechanical stress

Piezoelectricity is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word piezoelectricity means electricity resulting from pressure and latent heat. It is derived from Ancient Greek πιέζω (piézō) 'to squeeze or press', and ἤλεκτρον (ḗlektron) 'amber'. The German form of the word (Piezoelektricität) was coined in 1881 by the German physicist Wilhelm Gottlieb Hankel; the English word was coined in 1883.

<span class="mw-page-title-main">Dielectric</span> Electrically insulating substance able to be polarised by an applied electric field

In electromagnetism, a dielectric is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor, because they have no loosely bound, or free, electrons that may drift through the material, but instead they shift, only slightly, from their average equilibrium positions, causing dielectric polarisation. Because of dielectric polarisation, positive charges are displaced in the direction of the field and negative charges shift in the direction opposite to the field. This creates an internal electric field that reduces the overall field within the dielectric itself. If a dielectric is composed of weakly bonded molecules, those molecules not only become polarised, but also reorient so that their symmetry axes align to the field.

<span class="mw-page-title-main">Crystal structure</span> Ordered arrangement of atoms, ions, or molecules in a crystalline material

In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions, or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric patterns that repeat along the principal directions of three-dimensional space in matter.

<span class="mw-page-title-main">Pyroelectricity</span> Voltage created when a crystal is heated

Pyroelectricity is a property of certain crystals which are naturally electrically polarized and as a result contain large electric fields. Pyroelectricity can be described as the ability of certain materials to generate a temporary voltage when they are heated or cooled. The change in temperature modifies the positions of the atoms slightly within the crystal structure, so that the polarization of the material changes. This polarization change gives rise to a voltage across the crystal. If the temperature stays constant at its new value, the pyroelectric voltage gradually disappears due to leakage current. The leakage can be due to electrons moving through the crystal, ions moving through the air, or current leaking through a voltmeter attached across the crystal.

<span class="mw-page-title-main">Curie temperature</span> Temperature above which magnetic properties change

In physics and materials science, the Curie temperature (TC), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Curie temperature is named after Pierre Curie, who showed that magnetism was lost at a critical temperature.

The Rayleigh law describes the behavior of ferromagnetic materials at low fields.

<span class="mw-page-title-main">Polyvinylidene fluoride</span> Non-reactive thermoplastic fluoropolymer

Polyvinylidene fluoride or polyvinylidene difluoride (PVDF) is a highly non-reactive thermoplastic fluoropolymer produced by the polymerization of vinylidene difluoride. Its chemical formula is (C2H2F2)n.

<span class="mw-page-title-main">Lead zirconate titanate</span> Chemical compound

Lead zirconate titanate, also called lead zirconium titanate and commonly abbreviated as PZT, is an inorganic compound with the chemical formula Pb[ZrxTi1−x]O3(0 ≤ x ≤ 1). It is a ceramic perovskite material that shows a marked piezoelectric effect, meaning that the compound changes shape when an electric field is applied. It is used in a number of practical applications such as ultrasonic transducers and piezoelectric resonators. It is a white to off-white solid.

Energy harvesting (EH) – also known as power harvesting,energy scavenging, or ambient power – is the process by which energy is derived from external sources, then stored for use by small, wireless autonomous devices, like those used in wearable electronics, condition monitoring, and wireless sensor networks.

<span class="mw-page-title-main">Barium titanate</span> Chemical compound

Barium titanate (BTO) is an inorganic compound with chemical formula BaTiO3. Barium titanate appears white as a powder and is transparent when prepared as large crystals. It is a ferroelectric, pyroelectric, and piezoelectric ceramic material that exhibits the photorefractive effect. It is used in capacitors, electromechanical transducers and nonlinear optics.

In physics, ferroics is the generic name given to the study of ferromagnets, ferroelectrics, and ferroelastics.

Flexoelectricity is a property of a dielectric material whereby it exhibits a spontaneous electrical polarization induced by a strain gradient. Flexoelectricity is closely related to piezoelectricity, but while piezoelectricity refers to polarization due to uniform strain, flexoelectricity refers specifically to polarization due to strain that changes from point to point in the material. This nonuniform strain breaks centrosymmetry, meaning that unlike in piezoelectiricty, flexoelectric effects can occur in centrosymmetric crystal structures. Flexoelectricity is not the same as Ferroelasticity. Inverse flexoelectricity, quite intuitively can be defined as generation of strain gradient due to polarization. Similarly extending on that, Converse flexoelectricity would refer to the process where a polarization gradient induces strain in a material.

<span class="mw-page-title-main">Ferroelectric polymer</span> Group of crystalline polar polymers that are also ferroelectric

Ferroelectric polymers are a group of crystalline polar polymers that are also ferroelectric, meaning that they maintain a permanent electric polarization that can be reversed, or switched, in an external electric field.

<span class="mw-page-title-main">Piezoresponse force microscopy</span> Microscopy technique for piezoelectric materials

Piezoresponse force microscopy (PFM) is a variant of atomic force microscopy (AFM) that allows imaging and manipulation of piezoelectric/ferroelectric materials domains. This is achieved by bringing a sharp conductive probe into contact with a ferroelectric surface and applying an alternating current (AC) bias to the probe tip in order to excite deformation of the sample through the converse piezoelectric effect (CPE). The resulting deflection of the probe cantilever is detected through standard split photodiode detector methods and then demodulated by use of a lock-in amplifier (LiA). In this way topography and ferroelectric domains can be imaged simultaneously with high resolution.

In its most general form, the magnetoelectric effect (ME) denotes any coupling between the magnetic and the electric properties of a material. The first example of such an effect was described by Wilhelm Röntgen in 1888, who found that a dielectric material moving through an electric field would become magnetized. A material where such a coupling is intrinsically present is called a magnetoelectric.

A nanogenerator is a compact device that converts mechanical or thermal energy into electricity, serving as an energy harvesting solution for small, wireless autonomous devices. It taps into ambient energy sources like solar, wind, thermal differentials, and kinetic energy, enabling power generation for applications such as wearable electronics and wireless sensor networks. Nanogenerators utilize ambient background energy readily available in the environment, such as temperature gradients from machinery operation, electromagnetic energy in urban areas, or even motion vibrations during activities like walking. This approach offers a means to power low-energy electronics without the need for conventional fuel sources.

Sodium bismuth titanate or bismuth sodium titanium oxide (NBT or BNT) is a solid inorganic compound of sodium, bismuth, titanium and oxygen with the chemical formula of Na0.5Bi0.5TiO3 or Bi0.5Na0.5TiO3. This compound adopts the perovskite structure.

A polar metal, metallic ferroelectric, or ferroelectric metal is a metal that contains an electric dipole moment. Its components have an ordered electric dipole. Such metals should be unexpected, because the charge should conduct by way of the free electrons in the metal and neutralize the polarized charge. However they do exist. Probably the first report of a polar metal was in single crystals of the cuprate superconductors YBa2Cu3O7−δ,. A polarization was observed along one (001) axis by pyroelectric effect measurements, and the sign of the polarization was shown to be reversible, while its magnitude could be increased by poling with an electric field. The polarization was found to disappear in the superconducting state. The lattice distortions responsible were considered to be a result of oxygen ion displacements induced by doped charges that break inversion symmetry. The effect was utilized for fabrication of pyroelectric detectors for space applications, having the advantage of large pyroelectric coefficient and low intrinsic resistance. Another substance family that can produce a polar metal is the nickelate perovskites. One example interpreted to show polar metallic behavior is lanthanum nickelate, LaNiO3. A thin film of LaNiO3 grown on the (111) crystal face of lanthanum aluminate, (LaAlO3) was interpreted to be both conductor and a polar material at room temperature. The resistivity of this system, however, shows an upturn with decreasing temperature, hence does not strictly adhere to the definition of a metal. Also, when grown 3 or 4 unit cells thick (1-2 nm) on the (100) crystal face of LaAlO3, the LaNiO3 can be a polar insulator or polar metal depending on the atomic termination of the surface. Lithium osmate, LiOsO3 also undergoes a ferrorelectric transition when it is cooled below 140K. The point group changes from R3c to R3c losing its centrosymmetry. At room temperature and below, lithium osmate is an electric conductor, in single crystal, polycrystalline or powder forms, and the ferroelectric form only appears below 140K. Above 140K the material behaves like a normal metal. Artificial two-dimensional polar metal by charge transfer to a ferroelectric insulator has been realized in LaAlO3/Ba0.8Sr0.2TiO3/SrTiO3 complex oxide heterostructures.

<span class="mw-page-title-main">Dragan Damjanovic</span> Swiss-Bosnian-Herzegovinian materials scientist

Dragan Damjanovic is a Swiss-Bosnian-Herzegovinian materials scientist. From 2008 to 2022, he was a professor of material sciences at EPFL and head of the Group for Ferroelectrics and Functional Oxides.

References

  1. Werner Känzig (1957). "Ferroelectrics and Antiferroelectrics". In Frederick Seitz; T. P. Das; David Turnbull; E. L. Hahn (eds.). Solid State Physics. Vol. 4. Academic Press. p. 5. ISBN   978-0-12-607704-9.
  2. M. Lines; A. Glass (1979). Principles and applications of ferroelectrics and related materials. Clarendon Press, Oxford. ISBN   978-0-19-851286-8.
  3. See J. Valasek (1920). "Piezoelectric and allied phenomena in Rochelle salt". Physical Review. 15 (6): 537. Bibcode:1920PhRv...15..505.. doi:10.1103/PhysRev.15.505. and J. Valasek (1921). "Piezo-Electric and Allied Phenomena in Rochelle Salt". Physical Review. 17 (4): 475. Bibcode:1921PhRv...17..475V. doi:10.1103/PhysRev.17.475. hdl: 11299/179514 .
  4. Chiang, Y. et al.: Physical Ceramics, John Wiley & Sons 1997, New York
  5. Safari, Ahmad (2008). Piezoelectric and acoustic materials for transducer applications. Springer Science & Business Media. p. 21. Bibcode:2008pamt.book.....S. ISBN   978-0387765402.
  6. J.F. Scott (2000). Ferroelectric Memories. Springer. ISBN   978-3-540-66387-4.
  7. M. Dawber; K.M. Rabe; J.F. Scott (2005). "Physics of thin-film ferroelectric oxides". Reviews of Modern Physics. 77 (4): 1083. arXiv: cond-mat/0503372 . Bibcode:2005RvMP...77.1083D. doi:10.1103/RevModPhys.77.1083. S2CID   7517767.
  8. M.Ye. Zhuravlev; R.F. Sabirianov; S.S. Jaswal; E.Y. Tsymbal (2005). "Giant Electroresistance in Ferroelectric Tunnel Junctions". Physical Review Letters. 94 (24): 246802–4. arXiv: cond-mat/0502109 . Bibcode:2005PhRvL..94x6802Z. doi:10.1103/PhysRevLett.94.246802. S2CID   15093350.
  9. Ramesh, R.; Spaldin, N.A (2007). "Multiferroics: Progress and prospects in thin films". Nature Materials. 6 (1): 21–9. Bibcode:2007NatMa...6...21R. doi:10.1038/nmat1805. PMID   17199122.W. Eerenstein; N.D. Mathur; J.F. Scott (2006). "Multiferroic and magnetoelectric materials". Nature. 442 (7104): 759–65. Bibcode:2006Natur.442..759E. doi:10.1038/nature05023. PMID   16915279. S2CID   4387694., Spaldin, N.A.; Fiebig, M. (2005). "The renaissance of magnetoelectric multiferroics". Science. 309 (5733): 391–2. doi:10.1126/science.1113357. PMID   16020720. S2CID   118513837.M. Fiebig (2005). "Revival of the magnetoelectric effect". Journal of Physics D: Applied Physics. 38 (8): R123. Bibcode:2005JPhD...38R.123F. doi:10.1088/0022-3727/38/8/R01. S2CID   121588385.
  10. Parravano, G. (February 1952). "Ferroelectric Transitions and Heterogenous Catalysis". The Journal of Chemical Physics. 20 (2): 342–343. Bibcode:1952JChPh..20..342P. doi:10.1063/1.1700412.
  11. Kakekhani, Arvin; Ismail-Beigi, Sohrab; Altman, Eric I. (August 2016). "Ferroelectrics: A pathway to switchable surface chemistry and catalysis". Surface Science. 650: 302–316. Bibcode:2016SurSc.650..302K. doi: 10.1016/j.susc.2015.10.055 .
  12. Kolpak, Alexie M.; Grinberg, Ilya; Rappe, Andrew M. (2007-04-16). "Polarization Effects on the Surface Chemistry of ${\mathrm{PbTiO}}_{3}$-Supported Pt Films". Physical Review Letters. 98 (16): 166101. doi:10.1103/PhysRevLett.98.166101. PMID   17501432.
  13. Yun, Yang; Altman, Eric I. (December 2007). "Using Ferroelectric Poling to Change Adsorption on Oxide Surfaces". Journal of the American Chemical Society. 129 (50): 15684–15689. doi:10.1021/ja0762644. PMID   18034485.
  14. 1 2 Kakekhani, Arvin; Ismail-Beigi, Sohrab (29 June 2015). "Ferroelectric-Based Catalysis: Switchable Surface Chemistry". ACS Catalysis. 5 (8): 4537–4545. Bibcode:2015APS..MARY26011K. doi: 10.1021/acscatal.5b00507 .
  15. Laursen, Anders B.; Man, Isabela Costinela; Trinhammer, Ole L.; Rossmeisl, Jan; Dahl, Søren (December 2011). "The Sabatier Principle Illustrated by Catalytic H2O2 Decomposition on Metal Surfaces". Journal of Chemical Education. 88 (12): 1711–1715. Bibcode:2011JChEd..88.1711L. doi:10.1021/ed101010x.
  16. Seh, Zhi Wei; Kibsgaard, Jakob; Dickens, Colin F.; Chorkendorff, Ib; Nørskov, Jens K.; Jaramillo, Thomas F. (13 January 2017). "Combining theory and experiment in electrocatalysis: Insights into materials design" (PDF). Science. 355 (6321): eaad4998. doi:10.1126/science.aad4998. PMID   28082532. S2CID   217918130.
  17. Zhang, Yan; Xie, Mengying; Adamaki, Vana; Khanbareh, Hamideh; Bowen, Chris R. (2017). "Control of electro-chemical processes using energy harvesting materials and devices". Chemical Society Reviews. 46 (24): 7757–7786. doi: 10.1039/c7cs00387k . PMID   29125613.
  18. Fang, Liang; You, Lu; Liu, Jun-Ming (2018). "Ferroelectrics in Photocatalysis". Ferroelectric Materials for Energy Applications. pp. 265–309. doi:10.1002/9783527807505.ch9. ISBN   9783527807505. S2CID   104740681.
  19. Benke, Annegret; Mehner, Erik; Rosenkranz, Marco; Dmitrieva, Evgenia; Leisegang, Tilmann; Stöcker, Hartmut; Pompe, Wolfgang; Meyer, Dirk C. (30 July 2015). "Pyroelectrically Driven •OH Generation by Barium Titanate and Palladium Nanoparticles". The Journal of Physical Chemistry C. 119 (32): 18278–18286. doi:10.1021/acs.jpcc.5b04589.
  20. Kakekhani, Arvin; Ismail-Beigi, Sohrab (2016). "Ferroelectric oxide surface chemistry: water splitting via pyroelectricity". Journal of Materials Chemistry A. 4 (14): 5235–5246. doi:10.1039/C6TA00513F.
  21. Starr, Matthew B.; Shi, Jian; Wang, Xudong (11 June 2012). "Piezopotential-Driven Redox Reactions at the Surface of Piezoelectric Materials". Angewandte Chemie International Edition. 51 (24): 5962–5966. doi: 10.1002/anie.201201424 . PMID   22556008.
  22. Land, Cecil (2004). "Photoferroelectric imaging". McGraw-Hill Concise Encyclopedia of Science and Technology (5 ed.). New York: McGraw-Hill.
  23. Whatmore, R. W. (1991), Miller, L. S.; Mullin, J. B. (eds.), "Piezoelectric and Pyroelectric Materials and Their Applications", Electronic Materials: From Silicon to Organics, Boston, MA: Springer US, pp. 283–290, doi:10.1007/978-1-4615-3818-9_19, ISBN   978-1-4615-3818-9 , retrieved 2022-09-22
  24. Wanlin Zhu, John Hayden, Fan He, Jung-In Yang, Pannawit Tipsawat, Mohammad D. Hossain, Jon-Paul Maria, and Susan Trolier-McKinstry, "Strongly temperature dependent ferroelectric switching in AlN, Al1-xScxN, and Al1-xBxN thin films", Appl. Phys. Lett. 119, 062901 (2021) https://doi.org/10.1063/5.0057869
  25. Clark, Noel A.; Lagerwall, Sven T. (June 1980). "Submicrosecond bistable electro‐optic switching in liquid crystals". Applied Physics Letters. 36 (11): 899–901. Bibcode:1980ApPhL..36..899C. doi:10.1063/1.91359.
  26. Plekan, Oksana (2010). "Novel ferroelectric behaviour of N2O films: spontaneous potentials of up to 40 V." Poster Session Presented at ECAMP 2010, Salamanca, Spain. via Aarhus University.
  27. Aggarwal, M.D.; A.K. Batra; P. Guggilla; M.E. Edwards; B.G. Penn; J.R. Currie Jr. (March 2010). "Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications" (PDF). NASA. p. 3. Retrieved 26 July 2013.
  28. "Discovery of ferroelectricity in an elementary substance". National University of Singapore. April 2023. Retrieved 10 April 2023.
  29. "Rutgers Physicists Create New Class of 2D Artificial Materials".
  30. Cao, Yanwei; Wang, Zhen; Park, Se Young; Yuan, Yakun; Liu, Xiaoran; Nikitin, Sergey M.; Akamatsu, Hirofumi; Kareev, M.; Middey, S.; Meyers, D.; Thompson, P.; Ryan, P. J.; Shafer, Padraic; N’Diaye, A.; Arenholz, E.; Gopalan, Venkatraman; Zhu, Yimei; Rabe, Karin M.; Chakhalian, J. (18 April 2018). "Artificial two-dimensional polar metal at room temperature". Nature Communications. 9 (1): 1547. arXiv: 1804.05487 . Bibcode:2018NatCo...9.1547C. doi:10.1038/s41467-018-03964-9. PMC   5906683 . PMID   29670098.
  31. P. Chandra; P.B. Littlewood (2006). "A Landau Primer for Ferroelectrics". arXiv: cond-mat/0609347 .
  32. Wu, Menghao; Li, Ju (14 December 2021). "Sliding ferroelectricity in 2D van der Waals materials: Related physics and future opportunities". Proceedings of the National Academy of Sciences. 118 (50): e2115703118. Bibcode:2021PNAS..11815703W. doi: 10.1073/pnas.2115703118 . PMC   8685923 . PMID   34862304. S2CID   244872105.

Further reading