Galectin-3

Last updated
LGALS3
Protein LGALS3 PDB 1a3k.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases LGALS3 , CBP35, GAL3, GALBP, GALIG, L31, LGALS2, MAC2, lectin, galactoside binding soluble 3, galectin 3
External IDs OMIM: 153619 MGI: 96778 HomoloGene: 37608 GeneCards: LGALS3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001177388
NM_002306
NM_001357678

NM_001145953
NM_010705

RefSeq (protein)

NP_002297
NP_001344607

n/a

Location (UCSC) Chr 14: 55.12 – 55.15 Mb Chr 14: 47.61 – 47.62 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Galectin-3 is a protein that in humans is encoded by the LGALS3 gene. [5] [6] Galectin-3 is a member of the lectin family, of which 14 mammalian galectins have been identified. [7] [8]

Galectin-3 is approximately 30 kDa and, like all galectins, contains a carbohydrate-recognition-binding domain (CRD) of about 130 amino acids that enable the specific binding of β-galactosides. [7] [9] [10] [11]

Galectin-3 (Gal-3) is also a member of the beta-galactoside-binding protein family that plays an important role in cell-cell adhesion, cell-matrix interactions, macrophage activation, angiogenesis, metastasis, apoptosis.

Galectin-3 is encoded by a single gene, LGALS3, located on chromosome 14, locus q21–q22. [7] [12] Galectin-3 is expressed in the nucleus, cytoplasm, mitochondrion, cell surface, and extracellular space. [7] [9] [10]

Function

Galectin-3 has an affinity for beta-galactosides and exhibits antimicrobial activity against bacteria and fungi. [8]

This protein has been shown to be involved in the following biological processes: cell adhesion, cell activation and chemoattraction, cell growth and differentiation, cell cycle, and apoptosis. [7] Given galectin-3's broad biological functionality, it has been demonstrated to be involved in cancer, inflammation and fibrosis, heart disease, and stroke. [7] [11] [13] [14] Studies have also shown that the expression of galectin-3 is implicated in a variety of processes associated with heart failure, including myofibroblast proliferation, fibrogenesis, tissue repair, inflammation, and ventricular remodeling. [13] [15] [16]

Galectin-3 associates with the primary cilium and modulates renal cyst growth in congenital polycystic kidney disease. [17]

The functional roles of galectins in cellular response to membrane damage are rapidly expanding. [18] [19] [20] It has recently shown that Galectin-3 recruits ESCRTs to damaged lysosomes so that lysosomes can be repaired. [19]

Clinical significance

Fibrosis

A correlation between galectin-3 expression levels and various types of fibrosis has been found. Galectin-3 is upregulated in cases of liver fibrosis, renal fibrosis, and idiopathic pulmonary fibrosis (IPF). In several studies with mice deficient in or lacking galectin-3, conditions that caused control mice to develop IPF, renal, or liver fibrosis either induced limited fibrosis or failed to induce fibrosis entirely. [21] [22] [23] Companies have developed galectin modulators that block the binding of galectins to carbohydrate structures. The galectin-3 inhibitor, TD139 and GR-MD-02 have the potential to treat fibrosis. [23]

Cardiovascular disease

Elevated levels of galectin-3 have been found to be significantly associated with higher risk of death in both acute decompensated heart failure and chronic heart failure populations. [24] [25] In normal human, murine, and rat cells galectin-3 levels are low. However, as heart disease progresses, significant upregulation of galectin-3 occurs in the myocardium. [26]

Galectin-3 also may be used as a biomarker to identify at risk individuals, and predict patient response to different drugs and therapies. For instance, galectin-3 levels could be used in early detection of failure-prone hearts and lead to intervention strategies including broad spectrum anti-inflammatory agents. [13] One study concluded that individuals with systolic heart failure of ischaemic origin and elevated galectin-3 levels may benefit from statin treatment. [27] Galectin-3 has also been associated as a factor promoting ventricular remodeling following mitral valve repair, and may identify patients requiring additional therapies to obtain beneficial reverse remodeling. [28]

Cancer

The wide variety of effects of galectin-3 on cancerous cells are due to the unique structure and various interaction properties of the molecule. Overexpression and changes in the localization of galectin-3 molecules affects the prognosis of the patient and targeting the actions of galectin-3 poses a promising therapeutic strategy for the development of effective therapeutic agents for cancer treatment.

Overexpression and changes in sub- and inter-cellular localization of galectin-3 are commonly seen in cancerous conditions. The many interaction and binding properties of galectin-3 influence various cell activities based on its location. Altered galectin-3 expression can affect cancer cell growth and differentiation, chemoattraction, apoptosis, immunosuppression, angiogenesis, adhesion, invasion and metastasis. [29]

Galectin-3 overexpression promotes neoplastic transformation and the maintenance of transformed phenotypes as well as enhances the tumour cell's adhesion to the extracellular matrix and increase metastatic spreading. Galectin-3 can be either an inhibitory or a promoting apoptotic depending on its sub-cellular localization. In immune regulation, galectin-3 can regulate immune cell activities and helps contribute to the tumour cell's evasion of the immune system. Galectin-3 also helps promote angiogenesis. [29]

The roles of galectins and galectin-3, in particular, in cancer have been heavily investigated. [30] Of note, galectin-3 has been suggested to play important roles in cancer metastasis. [31]

Clinical applications

Cardiovascular risk indicator

Chronic heart failure has been found to be indicated by a galectin-3 tests, using the ARCHITECT immunochemistry platform developed by BG Medicine and marketed by Abbott, helping to determine which patients are most at risk for the disease. This test is also offered on the VIDAS platform marketed by bioMérieux. [32] Pecta-Sol C binds to galectin-3 binding sites on the surfaces of cells as a preventative measure created by Isaac Eliaz in conjunction with EcoNugenics. [33]

Galectin-3 is upregulated in patients with idiopathic pulmonary fibrosis. The cells that receive galectin-3 stimulation (fibroblasts, epithelial cells, and myofibroblasts) upregulated the formation of fibrosis and collagen formation. [34] Fibrosis is necessary in many aspects of intrabody regeneration. The myocardial lining constantly undergoes necessary fibrosis, and the inhibition of galectin-3 interferes with myocardial fibrogenesis. A study concluded that pharmacological inhibition of galectin-3 attenuates cardiac fibrosis, LV dysfunction, and subsequent heart failure development. [34]

Drug development

Galecto Biotech in Sweden is focused on developing drugs targeting galectin-3 to treat fibrosis, specifically idiopathic pulmonary fibrosis. [35] Galectin Therapeutics in the United States is also targeting galectins for clinical applications. Preclinical studies demonstrate that inhibition of galectin-3 significantly reduces portal hypertension and fibrosis. [36] Galectin Therapeutics galectin-3 inhibitor GR-MD-02 (belapectin) is currently in human clinical trials for nonalcoholic steatohepatitis (NASH) and for increasing the effectiveness and reducing side effects of cancer immunotherapy. [37] [38] [39]

Biomarkers

Galectin-3 is increasingly being used as a diagnostic marker for different cancers. It can be screened for and used as a prognostic factor to predict the progression of the cancer. Galectin-3 has varying effects in different types of cancer. [40] One approach to cancers with high galectin-3 expression is to inhibit galectin-3 to enhance treatment response. [41]

Interactions

LGALS3 has been shown to interact with LGALS3BP. [42] [43] [44]

In melanocytic cells LGALS3 gene expression may be regulated by MITF. [45]

Related Research Articles

<span class="mw-page-title-main">Fibronectin</span> Protein involved in cell adhesion, cell growth, cell migration and differentiation

Fibronectin is a high-molecular weight glycoprotein of the extracellular matrix that binds to membrane-spanning receptor proteins called integrins. It is approved for marketing as a topical solution in India by Central Drugs Standard Control organization in 2020 under the brand name FIBREGA for chronic wounds. Fibronectin also binds to other extracellular matrix proteins such as collagen, fibrin, and heparan sulfate proteoglycans.

<span class="mw-page-title-main">Extracellular matrix</span> Network of proteins and molecules outside cells that provides structural support for cells

In biology, the extracellular matrix (ECM), also called intercellular matrix, is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and biochemical support to surrounding cells. Because multicellularity evolved independently in different multicellular lineages, the composition of ECM varies between multicellular structures; however, cell adhesion, cell-to-cell communication and differentiation are common functions of the ECM.

<span class="mw-page-title-main">Cell adhesion</span> Process of cell attachment

Cell adhesion is the process by which cells interact and attach to neighbouring cells through specialised molecules of the cell surface. This process can occur either through direct contact between cell surfaces such as cell junctions or indirect interaction, where cells attach to surrounding extracellular matrix, a gel-like structure containing molecules released by cells into spaces between them. Cells adhesion occurs from the interactions between cell-adhesion molecules (CAMs), transmembrane proteins located on the cell surface. Cell adhesion links cells in different ways and can be involved in signal transduction for cells to detect and respond to changes in the surroundings. Other cellular processes regulated by cell adhesion include cell migration and tissue development in multicellular organisms. Alterations in cell adhesion can disrupt important cellular processes and lead to a variety of diseases, including cancer and arthritis. Cell adhesion is also essential for infectious organisms, such as bacteria or viruses, to cause diseases.

<span class="mw-page-title-main">Osteopontin</span> Mammalian protein found in Homo sapiens

Osteopontin (OPN), also known as bone /sialoprotein I, early T-lymphocyte activation (ETA-1), secreted phosphoprotein 1 (SPP1), 2ar and Rickettsia resistance (Ric), is a protein that in humans is encoded by the SPP1 gene. The murine ortholog is Spp1. Osteopontin is a SIBLING (glycoprotein) that was first identified in 1986 in osteoblasts.

<span class="mw-page-title-main">Catenin beta-1</span> Mammalian protein found in Homo sapiens

Catenin beta-1, also known as beta-catenin (β-catenin), is a protein that in humans is encoded by the CTNNB1 gene.

<span class="mw-page-title-main">MASP1 (protein)</span> Protein-coding gene in the species Homo sapiens

Mannan-binding lectin serine protease 1 also known as mannose-associated serine protease 1 (MASP-1) is an enzyme that in humans is encoded by the MASP1 gene.

<span class="mw-page-title-main">Galectin</span> Protein family binding to β-galactoside sugars

Galectins are a class of proteins that bind specifically to β-galactoside sugars, such as N-acetyllactosamine, which can be bound to proteins by either N-linked or O-linked glycosylation. They are also termed S-type lectins due to their dependency on disulphide bonds for stability and carbohydrate binding. There have been about 15 galectins discovered in mammals, encoded by the LGALS genes, which are numbered in a consecutive manner. Only galectin-1, -2, -3, -4, -7, -7B, -8, -9, -9B, 9C, -10, -12, -13, -14, and -16 have been identified in humans. Galectin-5 and -6 are found in rodents, whereas galectin-11 and -15 are uniquely found in sheep and goats. Members of the galectin family have also been discovered in other mammals, birds, amphibians, fish, nematodes, sponges, and some fungi. Unlike the majority of lectins they are not membrane bound, but soluble proteins with both intra- and extracellular functions. They have distinct but overlapping distributions but found primarily in the cytosol, nucleus, extracellular matrix or in circulation. Although many galectins must be secreted, they do not have a typical signal peptide required for classical secretion. The mechanism and reason for this non-classical secretion pathway is unknown.

<span class="mw-page-title-main">Galectin-1</span> Protein-coding gene in the species Homo sapiens

Galectin-1 is a protein that in humans is encoded by the LGALS1 gene.

<span class="mw-page-title-main">Integrin beta 6</span> Protein-coding gene in the species Homo sapiens

Integrin beta-6 is a protein that in humans is encoded by the ITGB6 gene. It is the β6 subunit of the integrin αvβ6. Integrins are αβ heterodimeric glycoproteins which span the cell’s membrane, integrating the outside and inside of the cell. Integrins bind to specific extracellular proteins in the extracellular matrix or on other cells and subsequently transduce signals intracellularly to affect cell behaviour. One α and one β subunit associate non-covalently to form 24 unique integrins found in mammals. While some β integrin subunits partner with multiple α subunits, β6 associates exclusively with the αv subunit. Thus, the function of ITGB6 is entirely associated with the integrin αvβ6.

<span class="mw-page-title-main">LGALS3BP</span> Protein-coding gene in the species Homo sapiens

Galectin-3-binding protein is a protein that in humans is encoded by the LGALS3BP gene.

<span class="mw-page-title-main">CLC (gene)</span> Protein-coding gene in the species Homo sapiens

Galectin-10 is an enzyme that in humans is encoded by the CLC gene.

<span class="mw-page-title-main">Galectin-8</span> Protein-coding gene in the species Homo sapiens

Galectin-8 is a protein of the galectin family that in humans is encoded by the LGALS8 gene.

<span class="mw-page-title-main">Galectin-9</span> Protein-coding gene in the species Homo sapiens

Galectin-9 was first isolated from mouse embryonic kidney in 1997 as a 36 kDa beta-galactoside lectin protein. Human galectin-9 is encoded by the LGALS9 gene.

<span class="mw-page-title-main">Galectin-2</span> Protein-coding gene in the species Homo sapiens

Galectin-2 is a protein that in humans is encoded by the LGALS2 gene.

<span class="mw-page-title-main">HAVCR2</span> Protein-coding gene in the species Homo sapiens

Hepatitis A virus cellular receptor 2 (HAVCR2), also known as T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), is a protein that in humans is encoded by the HAVCR2 (TIM-3)gene. HAVCR2 was first described in 2002 as a cell surface molecule expressed on IFNγ producing CD4+ Th1 and CD8+ Tc1 cells. Later, the expression was detected in Th17 cells, regulatory T-cells, and innate immune cells. HAVCR2 receptor is a regulator of the immune response.

<span class="mw-page-title-main">Galectin-7</span> Protein-coding gene in the species Homo sapiens

Galectin-7 is a protein that in humans is encoded by the LGALS7 gene.

<span class="mw-page-title-main">LGALS13</span> Protein-coding gene in the species Homo sapiens

Placental protein 13 (PP13) is a protein that in humans is encoded by the LGALS13 gene.

<span class="mw-page-title-main">Galectin-4</span> Protein-coding gene in the species Homo sapiens

Galectin-4 is a protein that in humans is encoded by the LGALS4 gene.

Cenderitide is a natriuretic peptide developed by the Mayo Clinic as a potential treatment for heart failure. Cenderitide is created by the fusion of the 15 amino acid C-terminus of dendroaspis natriuretic peptide (DNP) with the full C-type natriuretic peptide (CNP) structure both peptide which are endogenous to humans. This peptide chimera is a dual activator of the natriuretic peptide receptors NPR-A and NPR-B and therefore exhibits the natriuretic and diuretic properties of DNP, as well as the antiproliferative and antifibrotic properties of CNP.

MFAP4 is an extracellular matrix protein encoded by the MFAP4 gene. It is part of the MFAP family of proteoglycans, which are involved in cell adhesion, intercellular interactions and the assembly and/or maintenance of elastic fibres.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000131981 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000050335 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Raz A, Carmi P, Raz T, Hogan V, Mohamed A, Wolman SR (April 1991). "Molecular cloning and chromosomal mapping of a human galactoside-binding protein". Cancer Research. 51 (8): 2173–8. PMID   2009535.
  6. Barondes SH, Cooper DN, Gitt MA, Leffler H (August 1994). "Galectins. Structure and function of a large family of animal lectins". The Journal of Biological Chemistry. 269 (33): 20807–10. doi: 10.1016/S0021-9258(17)31891-4 . PMID   8063692.
  7. 1 2 3 4 5 6 Dumic J, Dabelic S, Flögel M (April 2006). "Galectin-3: an open-ended story". Biochimica et Biophysica Acta (BBA) - General Subjects. 1760 (4): 616–35. doi:10.1016/j.bbagen.2005.12.020. PMID   16478649.
  8. 1 2 "Entrez Gene: LGALS3 lectin, galactoside-binding, soluble, 3".
  9. 1 2 Liu FT, Patterson RJ, Wang JL (September 2002). "Intracellular functions of galectins". Biochimica et Biophysica Acta (BBA) - General Subjects. 1572 (2–3): 263–73. doi:10.1016/S0304-4165(02)00313-6. PMID   12223274.
  10. 1 2 Cooper DN (September 2002). "Galectinomics: finding themes in complexity". Biochimica et Biophysica Acta (BBA) - General Subjects. 1572 (2–3): 209–31. doi:10.1016/S0304-4165(02)00310-0. PMID   12223271.
  11. 1 2 Henderson NC, Sethi T (July 2009). "The regulation of inflammation by galectin-3". Immunological Reviews. 230 (1): 160–71. doi:10.1111/j.1600-065X.2009.00794.x. PMID   19594635. S2CID   36367366..
  12. Raimond J, Zimonjic DB, Mignon C, Mattei M, Popescu NC, Monsigny M, Legrand A (September 1997). "Mapping of the galectin-3 gene (LGALS3) to human chromosome 14 at region 14q21-22". Mammalian Genome. 8 (9): 706–7. doi:10.1007/s003359900548. PMID   9271684. S2CID   1955109.
  13. 1 2 3 Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JP, Schroen B, et al. (November 2004). "Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction". Circulation. 110 (19): 3121–8. doi: 10.1161/01.CIR.0000147181.65298.4D . PMID   15520318.
  14. Yan YP, Lang BT, Vemuganti R, Dempsey RJ (September 2009). "Galectin-3 mediates post-ischemic tissue remodeling". Brain Research. 1288: 116–24. doi:10.1016/j.brainres.2009.06.073. PMID   19573520. S2CID   8348013.
  15. Liu YH, D'Ambrosio M, Liao TD, Peng H, Rhaleb NE, Sharma U, et al. (February 2009). "N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin". American Journal of Physiology. Heart and Circulatory Physiology. 296 (2): H404-12. doi:10.1152/ajpheart.00747.2008. PMC   2643891 . PMID   19098114.
  16. Lin YH, Lin LY, Wu YW, Chien KL, Lee CM, Hsu RB, et al. (November 2009). "The relationship between serum galectin-3 and serum markers of cardiac extracellular matrix turnover in heart failure patients". Clinica Chimica Acta; International Journal of Clinical Chemistry. 409 (1–2): 96–9. doi:10.1016/j.cca.2009.09.001. PMID   19747906.
  17. Chiu MG, Johnson TM, Woolf AS, Dahm-Vicker EM, Long DA, Guay-Woodford L, et al. (December 2006). "Galectin-3 associates with the primary cilium and modulates cyst growth in congenital polycystic kidney disease". The American Journal of Pathology. 169 (6): 1925–38. doi:10.2353/ajpath.2006.060245. PMC   1762475 . PMID   17148658.
  18. Jia J, Abudu YP, Claude-Taupin A, Gu Y, Kumar S, Choi SW, et al. (April 2018). "Galectins Control mTOR in Response to Endomembrane Damage". Molecular Cell. 70 (1): 120–135.e8. doi:10.1016/j.molcel.2018.03.009. PMC   5911935 . PMID   29625033.
  19. 1 2 Jia J, Claude-Taupin A, Gu Y, Choi SW, Peters R, Bissa B, et al. (January 2020). "Galectin-3 Coordinates a Cellular System for Lysosomal Repair and Removal". Developmental Cell. 52 (1): 69–87.e8. doi:10.1016/j.devcel.2019.10.025. PMC   6997950 . PMID   31813797.
  20. Jia J, Bissa B, Brecht L, Allers L, Choi SW, Gu Y, et al. (January 2020). "AMPK, a Regulator of Metabolism and Autophagy, Is Activated by Lysosomal Damage via a Novel Galectin-Directed Ubiquitin Signal Transduction System". Molecular Cell. 77 (5): 951–969.e9. doi:10.1016/j.molcel.2019.12.028. PMC   7785494 . PMID   31995728.
  21. Henderson NC, Mackinnon AC, Farnworth SL, Poirier F, Russo FP, Iredale JP, et al. (March 2006). "Galectin-3 regulates myofibroblast activation and hepatic fibrosis". Proceedings of the National Academy of Sciences of the United States of America. 103 (13): 5060–5. Bibcode:2006PNAS..103.5060H. doi: 10.1073/pnas.0511167103 . PMC   1458794 . PMID   16549783.
  22. Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP, et al. (February 2008). "Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis". The American Journal of Pathology. 172 (2): 288–98. doi:10.2353/ajpath.2008.070726. PMC   2312353 . PMID   18202187.
  23. 1 2 Mackinnon AC, Gibbons MA, Farnworth SL, Leffler H, Nilsson UJ, Delaine T, et al. (March 2012). "Regulation of transforming growth factor-β1-driven lung fibrosis by galectin-3". American Journal of Respiratory and Critical Care Medicine. 185 (5): 537–46. doi:10.1164/rccm.201106-0965OC. PMC   3410728 . PMID   22095546.
  24. van Kimmenade RR, Januzzi JL, Ellinor PT, Sharma UC, Bakker JA, Low AF, et al. (September 2006). "Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure". Journal of the American College of Cardiology. 48 (6): 1217–24. doi: 10.1016/j.jacc.2006.03.061 . PMID   16979009.
  25. Lok DJ, Van Der Meer P, de la Porte PW, Lipsic E, Van Wijngaarden J, Hillege HL, van Veldhuisen DJ (May 2010). "Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study". Clinical Research in Cardiology. 99 (5): 323–8. doi:10.1007/s00392-010-0125-y. PMC   2858799 . PMID   20130888.
  26. de Boer RA, Voors AA, Muntendam P, van Gilst WH, van Veldhuisen DJ (September 2009). "Galectin-3: a novel mediator of heart failure development and progression". European Journal of Heart Failure. 11 (9): 811–7. doi:10.1093/eurjhf/hfp097. PMID   19648160. S2CID   32686826.
  27. Gullestad L, Ueland T, Kjekshus J, Nymo SH, Hulthe J, Muntendam P, et al. (September 2012). "Galectin-3 predicts response to statin therapy in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA)". European Heart Journal. 33 (18): 2290–6. doi: 10.1093/eurheartj/ehs077 . PMID   22513778.
  28. Kortekaas KA, Hoogslag GE, de Boer RA, Dokter MM, Versteegh MI, Braun J, et al. (September 2013). "Galectin-3 and left ventricular reverse remodelling after surgical mitral valve repair". European Journal of Heart Failure. 15 (9): 1011–8. doi: 10.1093/eurjhf/hft056 . PMID   23576289. S2CID   1252812.
  29. 1 2 Newlaczyl AU, Yu LG (December 2011). "Galectin-3--a jack-of-all-trades in cancer". Cancer Letters. 313 (2): 123–8. doi:10.1016/j.canlet.2011.09.003. PMID   21974805.
  30. Liu FT, Rabinovich GA (January 2005). "Galectins as modulators of tumour progression". Nature Reviews. Cancer. 5 (1): 29–41. doi:10.1038/nrc1527. PMID   15630413. S2CID   4849835.
  31. Reticker-Flynn NE, Malta DF, Winslow MM, Lamar JM, Xu MJ, Underhill GH, et al. (2012). "A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis". Nature Communications. 3 (3): 1122. Bibcode:2012NatCo...3.1122R. doi:10.1038/ncomms2128. PMC   3794716 . PMID   23047680.
  32. Ross, D. "Abbott's Galectin-3 Test Provides Doctors in Europe with New Tool for Assessing the Prognosis of Chronic Heart Failure Patient" . Retrieved 28 November 2013.
  33. Brechka N (2009). "Putting the Squeeze on Cancer" . Retrieved 28 November 2013.{{cite journal}}: Cite journal requires |journal= (help)
  34. 1 2 Yu L, Ruifrok WP, Meissner M, Bos EM, van Goor H, Sanjabi B, et al. (January 2013). "Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis". Circulation: Heart Failure. 6 (1): 107–17. doi: 10.1161/circheartfailure.112.971168 . PMID   23230309.
  35. Garber K (June 2013). "Galecto Biotech". Nature Biotechnology. 31 (6): 481. doi:10.1038/nbt0613-481. PMID   23752421. S2CID   205268879.
  36. "Galectin Therapeutics' Preclinical Data Published in PLOS ONE Show Its Galectin Inhibitors Reverse Cirrhosis and Significantly Reduce Fibrosis and Portal Hypertension". Globe Newswire. Retrieved 28 November 2013.
  37. Neuschwander-Tetri BA (May 2020). "Therapeutic Landscape for NAFLD in 2020". Gastroenterology. 158 (7): 1984–1998.e3. doi:10.1053/j.gastro.2020.01.051. PMID   32061596. S2CID   211133881.
  38. Narayan V, Thompson EW, Demissei B, Ho JE, Januzzi JL, Ky B (June 2020). "Mechanistic Biomarkers Informative of Both Cancer and Cardiovascular Disease: JACC State-of-the-Art Review". Journal of the American College of Cardiology. 75 (21): 2726–2737. doi:10.1016/j.jacc.2020.03.067. PMC   7261288 . PMID   32466889.
  39. Martínez-Bosch N, Rodriguez-Vida A, Juanpere N, Lloreta J, Rovira A, Albanell J, et al. (July 2019). "Galectins in prostate and bladder cancer: tumorigenic roles and clinical opportunities". Nature Reviews. Urology. 16 (7): 433–445. doi:10.1038/s41585-019-0183-5. hdl: 10261/201560 . PMID   31015643. S2CID   128360958.
  40. Idikio HA (19 October 2011). "Galectin-3 and Beclin1/Atg6 genes in human cancers: using cDNA tissue panel, qRT-PCR, and logistic regression model to identify cancer cell biomarkers". PLOS ONE. 6 (10): e26150. Bibcode:2011PLoSO...626150I. doi: 10.1371/journal.pone.0026150 . PMC   3198435 . PMID   22039439.
  41. Cay T (March 2011). "Immunhistochemical[sic] expression of galectin-3 in cancer: a review of the literature". Turk Patoloji Dergisi. 1. 28 (1): 1–10. doi: 10.5146/tjpath.2012.01090 . PMID   22207425.
  42. Rosenberg I, Cherayil BJ, Isselbacher KJ, Pillai S (October 1991). "Mac-2-binding glycoproteins. Putative ligands for a cytosolic beta-galactoside lectin". The Journal of Biological Chemistry. 266 (28): 18731–6. doi: 10.1016/S0021-9258(18)55124-3 . PMID   1917996.
  43. Koths K, Taylor E, Halenbeck R, Casipit C, Wang A (July 1993). "Cloning and characterization of a human Mac-2-binding protein, a new member of the superfamily defined by the macrophage scavenger receptor cysteine-rich domain". The Journal of Biological Chemistry. 268 (19): 14245–9. doi: 10.1016/S0021-9258(19)85233-X . PMID   8390986.
  44. Tinari N, Kuwabara I, Huflejt ME, Shen PF, Iacobelli S, Liu FT (January 2001). "Glycoprotein 90K/MAC-2BP interacts with galectin-1 and mediates galectin-1-induced cell aggregation". International Journal of Cancer. 91 (2): 167–72. doi:10.1002/1097-0215(200002)9999:9999<::aid-ijc1022>3.3.co;2-q. PMID   11146440.
  45. Hoek KS, Schlegel NC, Eichhoff OM, Widmer DS, Praetorius C, Einarsson SO, et al. (December 2008). "Novel MITF targets identified using a two-step DNA microarray strategy". Pigment Cell & Melanoma Research. 21 (6): 665–76. doi: 10.1111/j.1755-148X.2008.00505.x . PMID   19067971. S2CID   24698373.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.