Genome sequencing of endangered species

Last updated

Genome sequencing of endangered species is the application of Next Generation Sequencing (NGS) technologies in the field of conservation biology, with the aim of generating life history, demographic and phylogenetic data of relevance to the management of endangered wildlife. [1]

Contents

Background

In the context of conservation biology, genomic technologies such as the production of large-scale sequencing data sets via DNA sequencing can be used to highlight the relevant aspects of the biology of wildlife species for which management actions may be required. This may involve the estimation of recent demographic events, genetic variations, divergence between species and population structure. Genome-wide association studies (GWAS) are useful to examine the role of natural selection at the genome level, to identify the loci associated with fitness, local adaptation, inbreeding, depression or disease susceptibility. The access to all these data and the interrogation of genome-wide variation of SNP markers can help the identification of the genetic changes that influence the fitness of wild species and are also important to evaluate the potential respond to changing environments. NGS projects are expected to rapidly increase the number of threatened species for which assembled genomes and detailed information on sequence variation are available and the data will advance investigations relevant to the conservation of biological diversity. [1]

Methodology

Non-computational methods

The traditional approaches in the preservation of endangered species are captive breeding and the private farming. In some cases those methods led to great results, but some problems still remain. For example, by inbreeding only few individuals, the genetic pool of a subpopulation remains limited or may decrease.[ citation needed ]

Phylogenetic analysis and gene family estimation

Genetic analyses can remove subjective elements from the determination of the phylogenetic relationship between organisms. Considering the great variety of information provided by living organisms, it is clear that the type of data will affect both the method of treatment and validity of the results: the higher the correlation of data and genotype, the greater is the validity likely to be. The data analysis can be used to compared different sequencing database and find similar sequences, or similar protein in different species. The comparison can be done using informatic software based on alignment to know the divergence between different species and evaluate the similarities. [2] [ better source needed ]

NGS/Advanced sequencing methodologies

Since whole-genome sequencing is generally very data-intensive, techniques for reduced representation genomic approaches are sometimes used for practical applications. For example, restriction site-associated DNA sequencing (RADseq) and double digest RADseq are being developed. With those techniques researchers can target different numbers of loci. With a statistical and bioinformatic approach scientists can make considerations about big genomes, by just focusing on a small representative part of it. [3]

Statistical and computational methods

While solving biological problems, one encounters multiple types of genomic data or sometimes an aggregate of same type of data across multiple studies and decoding such huge amount of data manually is unfeasible and tedious. Therefore, integrated analysis of genomic data using statistical methods has become popular. The rapid advancement in high throughput technologies allows researchers to answer more complex biological questions enabling the development of statistical methods in integrated genomics to establish more effective therapeutic strategies for human disease. [4]

Genome crucial features

While studying the genome, there are some crucial aspects that should be taken in consideration. Gene prediction is the identification of genetic elements in a genomic sequence. This study is based on a combination of approaches: de novo, homology prediction, and transcription. Tools such as EvidenceModeler are used to merge the different results. [5] Gene structure also have been compared, including mRNA length, exon length, intron length, exon number, and non-coding RNA.[ citation needed ]

Analysis of repeated sequences has been found useful in reconstructing species divergence timelines. [6]

Application and case studies

Genomic approach in gender determination

In order to preserve a specie, knowledge of the mating system is crucial: scientists can stabilize wild populations through captive breeding, followed by the release in the environment of new individuals. [3] This task is particularly difficult by considering the species with homomorphic sex chromosomes and a large genome. [3] For example, in the case of amphibians, there are multiple transitions among male and/or female heterogamety. Sometimes even variation of sex chromosomes within amphibian populations of the same specie were reported. [3]

Japanese giant salamander

Japanese giant salamander(Andrias japonicus) Japanese Giant Salamander (Andrias japonicus) Stuffed Specimen.jpg
Japanese giant salamander(Andrias japonicus)

The multiple transitions among XY and ZW systems that occur in amphibians determine the sex chromosome systems to be labile in salamanders populations. By understanding the chromosomal basis of sex of those species, it is possible to reconstruct the phylogenetic history of those families and use more efficient strategies in their conservation.

By using the ddRADseq method scientists found new sex-related loci in a 56 Gb genome of the family Cryptobranchidae. Their results support the hypothesis of female heterogamety of this species. These loci were confirmed through the bioinformatic analysis of presence/absence of that genetic locus in sex-determined individuals. Their sex was established previously by ultrasound, laparoscopy and measuring serum calcium level differences. The determination of those candidate sexual loci was performed so as to test hypotheses of both female heterogamety and male heterogamety. Finally to evaluate the validity of those loci, they were amplified through PCR directly from samples of known-sex individuals. This final step led to the demonstration of female heterogamety of several divergent populations of the family Cryptobranchidae. [3]

Genomic approach in genetic variability

Dryas monkey and golden snub-nosed monkey

Golden snub-nosed monkey (Rhinopithecus roxellana) Golden Snub-nosed Monkeys, Qinling Mountains - China.jpg
Golden snub-nosed monkey (Rhinopithecus roxellana)

A recent study used whole-genome sequencing data to demonstrate the sister lineage between the Dryas monkey and vervet monkey and their divergence with additional bidirectional gene flow approximately 750,000 to approximately 500,000 years ago. With <250 remaining adult individuals, the study showed high genetic diversity and low levels of inbreeding and genetic load in the studied Dryas monkey individuals. [7]

Another study used several techniques such as single-molecule real time sequencing, paired-end sequencing, optical maps, and high-throughput chromosome conformation capture to obtain a high quality chromosome assembly from already constructed incomplete and fragmented genome assembly for the golden snub-nosed monkey. The modern techniques used in this study represented 100-fold improvement in the genome with 22,497 protein-coding genes, of which majority were functionally annotated. The reconstructed genome showed a close relationship between the species and the Rhesus macaque, indicating a divergence approximately 13.4 million years ago. [8]

Genomic approach in preservation

Plants

Plants species identified as PSESP ("plant species with extremely small population") have been the focus of genomic studies, with the aim of determining the most endangered populations. [9] [10] The DNA genome can be sequenced starting from the fresh leaves by doing a DNA extraction. The combination of different sequencing techniques together can be used to obtain a high quality data that can be used to assembly the genome. The RNA extraction is essential for the transcriptome assembly and the extraction process start from stem, roots, fruits, buds and leaves. The de novo genome assembly can be performed using software to optimize assembly and scaffolding. The software can also be used to fill the gaps and reduce the interaction between chromosome. The combination of different data can be used for the identification of orthologous gene with different species, phylogenetic tree construction, and interspecific genome comparisons. [9]

Limits and future perspectives

The development of indirect sequencing methods has to some degree mitigated the lack of efficient DNA sequencing technologies. These techniques allowed researchers to increase scientific knowledge in fields like ecology and evolution. Several genetic markers, more or less well suited for the purpose, were developed helping researchers to address many issues among which demography and mating systems, population structures and phylogeography, speciational processes and species differences, hybridization and introgression, phylogenetics at many temporal scales. However, all these approaches had a primary deficiency: they were all limited only to a fraction of the entire genome so that genome-wide parameters were inferred from a tiny amount of genetic material. [11]

The invention and rising of DNA sequencing methods brought a huge contribution in increasing available data potentially useful to improve the field of conservation biology. The ongoing development of cheaper and high throughput allowed the production of a wide array of information in several disciplines providing conservation biologists a very powerful databank from which was possible to extrapolate useful information about, for example, population structure, genetic connections, identification of potential risks due to demographic changes and inbreeding processes through population-genomic approaches that rely on the detection of SNPs, indel or CNV. From one side of the coin, data derived from high throughput sequencing of whole genomes were potentially a massive advance in the field of species conservation, opening wide doors for future challenges and opportunities. On the other side all these data brought researchers to face two main issues. First, how to process all these information. Second, how to translate all the available information into conservation's strategies and practice or, in other words, how to fill the gap between genomic researches and conservation application. [12] [13] [14]

Unfortunately, there are many analytical and practical problems to consider using approaches involving genome-wide sequencing. Availability of samples is a major limiting factor: sampling procedures may disturb an already fragile population or may have a big impact in individual animals itself putting limitations to samples' collection. For these reasons several alternative strategies where developed: constant monitoring, for example with radio collars, allow us to understand the behavior and develop strategies to obtain genetic samples and management of the endangered populations. The samples taken from those species are then used to produce primary cell culture from biopsies. Indeed, this kind of material allow us to grow in vitro cells, and allow us to extract and study genetic material without constantly sampling the endangered populations. Despite a faster and easier data production and a continuous improvement of sequencing technologies, there is still a marked delay of data analysis and processing techniques. Genome-wide analysis and big genomes studies require advances in bioinformatics and computational biology. At the same time improvements in the statistical programs and in the population genetics are required to make better conservation strategies. This last aspect work in parallel with prediction strategies which should take in consideration all features that determine fitness of a species. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Bioinformatics</span> Computational analysis of large, complex sets of biological data

Bioinformatics is an interdisciplinary field of science that develops methods and software tools for understanding biological data, especially when the data sets are large and complex. Bioinformatics uses biology, chemistry, physics, computer science, computer programming, information engineering, mathematics and statistics to analyze and interpret biological data. The subsequent process of analyzing and interpreting data is referred to as computational biology.

<span class="mw-page-title-main">Human genome</span> Complete set of nucleic acid sequences for humans

The human genome is a complete set of nucleic acid sequences for humans, encoded as DNA within the 23 chromosome pairs in cell nuclei and in a small DNA molecule found within individual mitochondria. These are usually treated separately as the nuclear genome and the mitochondrial genome. Human genomes include both protein-coding DNA sequences and various types of DNA that does not encode proteins. The latter is a diverse category that includes DNA coding for non-translated RNA, such as that for ribosomal RNA, transfer RNA, ribozymes, small nuclear RNAs, and several types of regulatory RNAs. It also includes promoters and their associated gene-regulatory elements, DNA playing structural and replicatory roles, such as scaffolding regions, telomeres, centromeres, and origins of replication, plus large numbers of transposable elements, inserted viral DNA, non-functional pseudogenes and simple, highly repetitive sequences. Introns make up a large percentage of non-coding DNA. Some of this non-coding DNA is non-functional junk DNA, such as pseudogenes, but there is no firm consensus on the total amount of junk DNA.

<span class="mw-page-title-main">Genomics</span> Discipline in genetics

Genomics is an interdisciplinary field of biology focusing on the structure, function, evolution, mapping, and editing of genomes. A genome is an organism's complete set of DNA, including all of its genes as well as its hierarchical, three-dimensional structural configuration. In contrast to genetics, which refers to the study of individual genes and their roles in inheritance, genomics aims at the collective characterization and quantification of all of an organism's genes, their interrelations and influence on the organism. Genes may direct the production of proteins with the assistance of enzymes and messenger molecules. In turn, proteins make up body structures such as organs and tissues as well as control chemical reactions and carry signals between cells. Genomics also involves the sequencing and analysis of genomes through uses of high throughput DNA sequencing and bioinformatics to assemble and analyze the function and structure of entire genomes. Advances in genomics have triggered a revolution in discovery-based research and systems biology to facilitate understanding of even the most complex biological systems such as the brain.

<span class="mw-page-title-main">Gene flow</span> Transfer of genetic variation from one population to another

In population genetics, gene flow is the transfer of genetic material from one population to another. If the rate of gene flow is high enough, then two populations will have equivalent allele frequencies and therefore can be considered a single effective population. It has been shown that it takes only "one migrant per generation" to prevent populations from diverging due to drift. Populations can diverge due to selection even when they are exchanging alleles, if the selection pressure is strong enough. Gene flow is an important mechanism for transferring genetic diversity among populations. Migrants change the distribution of genetic diversity among populations, by modifying allele frequencies. High rates of gene flow can reduce the genetic differentiation between the two groups, increasing homogeneity. For this reason, gene flow has been thought to constrain speciation and prevent range expansion by combining the gene pools of the groups, thus preventing the development of differences in genetic variation that would have led to differentiation and adaptation. In some cases dispersal resulting in gene flow may also result in the addition of novel genetic variants under positive selection to the gene pool of a species or population

<span class="mw-page-title-main">Omics</span> Suffix in biology

The branches of science known informally as omics are various disciplines in biology whose names end in the suffix -omics, such as genomics, proteomics, metabolomics, metagenomics, phenomics and transcriptomics. Omics aims at the collective characterization and quantification of pools of biological molecules that translate into the structure, function, and dynamics of an organism or organisms.

Gene duplication is a major mechanism through which new genetic material is generated during molecular evolution. It can be defined as any duplication of a region of DNA that contains a gene. Gene duplications can arise as products of several types of errors in DNA replication and repair machinery as well as through fortuitous capture by selfish genetic elements. Common sources of gene duplications include ectopic recombination, retrotransposition event, aneuploidy, polyploidy, and replication slippage.

<span class="mw-page-title-main">Single-nucleotide polymorphism</span> Single nucleotide in genomic DNA at which different sequence alternatives exist

In genetics and bioinformatics, a single-nucleotide polymorphism is a germline substitution of a single nucleotide at a specific position in the genome that is present in a sufficiently large fraction of considered population.

<span class="mw-page-title-main">Comparative genomics</span>

Comparative genomics is a field of biological research in which the genomic features of different organisms are compared. The genomic features may include the DNA sequence, genes, gene order, regulatory sequences, and other genomic structural landmarks. In this branch of genomics, whole or large parts of genomes resulting from genome projects are compared to study basic biological similarities and differences as well as evolutionary relationships between organisms. The major principle of comparative genomics is that common features of two organisms will often be encoded within the DNA that is evolutionarily conserved between them. Therefore, comparative genomic approaches start with making some form of alignment of genome sequences and looking for orthologous sequences in the aligned genomes and checking to what extent those sequences are conserved. Based on these, genome and molecular evolution are inferred and this may in turn be put in the context of, for example, phenotypic evolution or population genetics.

<span class="mw-page-title-main">Metagenomics</span> Study of genes found in the environment

Metagenomics is the study of genetic material recovered directly from environmental or clinical samples by a method called sequencing. The broad field may also be referred to as environmental genomics, ecogenomics, community genomics or microbiomics.

<span class="mw-page-title-main">Conservation genetics</span> Interdisciplinary study of extinction avoidance

Conservation genetics is an interdisciplinary subfield of population genetics that aims to understand the dynamics of genes in a population for the purpose of natural resource management and extinction prevention. Researchers involved in conservation genetics come from a variety of fields including population genetics, natural resources, molecular ecology, biology, evolutionary biology, and systematics. Genetic diversity is one of the three fundamental measures of biodiversity, so it is an important consideration in the wider field of conservation biology.

<span class="mw-page-title-main">Molecular ecology</span> Field of evolutionary biology

Molecular ecology is a field of evolutionary biology that is concerned with applying molecular population genetics, molecular phylogenetics, and more recently genomics to traditional ecological questions. It is virtually synonymous with the field of "Ecological Genetics" as pioneered by Theodosius Dobzhansky, E. B. Ford, Godfrey M. Hewitt, and others. These fields are united in their attempt to study genetic-based questions "out in the field" as opposed to the laboratory. Molecular ecology is related to the field of conservation genetics.

<span class="mw-page-title-main">Synteny</span>

In genetics, the term synteny refers to two related concepts:

Inbreeding depression is the reduced biological fitness which has the potential to result from inbreeding. Biological fitness refers to an organism's ability to survive and perpetuate its genetic material. Inbreeding depression is often the result of a population bottleneck. In general, the higher the genetic variation or gene pool within a breeding population, the less likely it is to suffer from inbreeding depression, though inbreeding and outbreeding depression can simultaneously occur.

Coalescent theory is a model of how alleles sampled from a population may have originated from a common ancestor. In the simplest case, coalescent theory assumes no recombination, no natural selection, and no gene flow or population structure, meaning that each variant is equally likely to have been passed from one generation to the next. The model looks backward in time, merging alleles into a single ancestral copy according to a random process in coalescence events. Under this model, the expected time between successive coalescence events increases almost exponentially back in time. Variance in the model comes from both the random passing of alleles from one generation to the next, and the random occurrence of mutations in these alleles.

<span class="mw-page-title-main">Human Genome Project</span> Human genome sequencing programme

The Human Genome Project (HGP) was an international scientific research project with the goal of determining the base pairs that make up human DNA, and of identifying, mapping and sequencing all of the genes of the human genome from both a physical and a functional standpoint. It started in 1990 and was completed in 2003. It remains the world's largest collaborative biological project. Planning for the project started after it was adopted in 1984 by the US government, and it officially launched in 1990. It was declared complete on April 14, 2003, and included about 92% of the genome. Level "complete genome" was achieved in May 2021, with a remaining only 0.3% bases covered by potential issues. The final gapless assembly was finished in January 2022.

Human evolutionary genetics studies how one human genome differs from another human genome, the evolutionary past that gave rise to the human genome, and its current effects. Differences between genomes have anthropological, medical, historical and forensic implications and applications. Genetic data can provide important insights into human evolution.

Population genomics is the large-scale comparison of DNA sequences of populations. Population genomics is a neologism that is associated with population genetics. Population genomics studies genome-wide effects to improve our understanding of microevolution so that we may learn the phylogenetic history and demography of a population.

<span class="mw-page-title-main">Reference genome</span> Digital nucleic acid sequence database

A reference genome is a digital nucleic acid sequence database, assembled by scientists as a representative example of the set of genes in one idealized individual organism of a species. As they are assembled from the sequencing of DNA from a number of individual donors, reference genomes do not accurately represent the set of genes of any single individual organism. Instead, a reference provides a haploid mosaic of different DNA sequences from each donor. For example, one of the most recent human reference genomes, assembly GRCh38/hg38, is derived from >60 genomic clone libraries. There are reference genomes for multiple species of viruses, bacteria, fungus, plants, and animals. Reference genomes are typically used as a guide on which new genomes are built, enabling them to be assembled much more quickly and cheaply than the initial Human Genome Project. Reference genomes can be accessed online at several locations, using dedicated browsers such as Ensembl or UCSC Genome Browser.

<span class="mw-page-title-main">Restriction site associated DNA markers</span> Type of genetic marker

Restriction site associated DNA (RAD) markers are a type of genetic marker which are useful for association mapping, QTL-mapping, population genetics, ecological genetics and evolutionary genetics. The use of RAD markers for genetic mapping is often called RAD mapping. An important aspect of RAD markers and mapping is the process of isolating RAD tags, which are the DNA sequences that immediately flank each instance of a particular restriction site of a restriction enzyme throughout the genome. Once RAD tags have been isolated, they can be used to identify and genotype DNA sequence polymorphisms mainly in form of single nucleotide polymorphisms (SNPs). Polymorphisms that are identified and genotyped by isolating and analyzing RAD tags are referred to as RAD markers. Although genotyping by sequencing presents an approach similar to the RAD-seq method, they differ in some substantial ways.

<span class="mw-page-title-main">Landscape genetics</span> Combination of population genetics and landscape ecology

Landscape genetics is the scientific discipline that combines population genetics and landscape ecology. It broadly encompasses any study that analyses plant or animal population genetic data in conjunction with data on the landscape features and matrix quality where the sampled population lives. This allows for the analysis of microevolutionary processes affecting the species in light of landscape spatial patterns, providing a more realistic view of how populations interact with their environments. Landscape genetics attempts to determine which landscape features are barriers to dispersal and gene flow, how human-induced landscape changes affect the evolution of populations, the source-sink dynamics of a given population, and how diseases or invasive species spread across landscapes.

References

  1. 1 2 3 Steiner, Cynthia C.; Putnam, Andrea S.; Hoeck, Paquita E.A.; Ryder, Oliver A. (2013). "Conservation Genomics of Threatened Animal Species". Annual Review of Animal Biosciences . 1: 261–281. doi:10.1146/annurev-animal-031412-103636. PMID   25387020.
  2. Boetzer, Marten; Henkel, Christiaan V.; Jansen, Hans J.; Butler, Derek; Pirovano, Walter (2011-02-15). "Scaffolding pre-assembled contigs using SSPACE". Bioinformatics. 27 (4): 578–579. doi: 10.1093/bioinformatics/btq683 . ISSN   1367-4811. PMID   21149342.
  3. 1 2 3 4 5 Hime, Paul M.; Briggler, Jeffrey T.; Reece, Joshua S.; Weisrock, David W. (2019-10-01). "Genomic Data Reveal Conserved Female Heterogamety in Giant Salamanders with Gigantic Nuclear Genomes". G3: Genes, Genomes, Genetics. 9 (10): 3467–3476. doi:10.1534/g3.119.400556. ISSN   2160-1836. PMC   6778777 . PMID   31439718.
  4. Richardson, Sylvia; Tseng, George C.; Sun, Wei (June 2016). "Statistical Methods in Integrative Genomics". Annual Review of Statistics and Its Application . 3 (1): 181–209. Bibcode:2016AnRSA...3..181R. doi:10.1146/annurev-statistics-041715-033506. ISSN   2326-8298. PMC   4963036 . PMID   27482531.
  5. Haas, Brian J.; et al. (2008). "Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments". Genome Biology. 9 (1): R7. doi: 10.1186/gb-2008-9-1-r7 . PMC   2395244 . PMID   18190707.
  6. "Endangered animals can be identified by rate of genetic diversity loss - Purdue University". www.purdue.edu. Retrieved 2019-11-26.
  7. van der Valk, Tom; Gonda, Catalina M; Silegowa, Henri; Almanza, Sandra; Sifuentes-Romero, Itzel; Hart, Terese B; Hart, John A; Detwiler, Kate M; Guschanski, Katerina (2020). Yoder, Anne (ed.). "The Genome of the Endangered Dryas Monkey Provides New Insights into the Evolutionary History of the Vervets". Molecular Biology and Evolution . 37: 183–194. doi:10.1093/molbev/msz213. ISSN   0737-4038. PMC   6984364 . PMID   31529046.
  8. Wang, Lu; Wu, Jinwei; Liu, Xiaomei; Di, Dandan; Liang, Yuhong; Feng, Yifei; Zhang, Suyun; Li, Baoguo; Qi, Xiao-Guang (2019-08-01). "A high-quality genome assembly for the endangered golden snub-nosed monkey (Rhinopithecus roxellana)". GigaScience. 8 (8): giz098. doi:10.1093/gigascience/giz098. ISSN   2047-217X. PMC   6705546 . PMID   31437279.
  9. 1 2 Yang, Jing; Wariss, Hafiz Muhammad; Tao, Lidan; Zhang, Rengang; Yun, Quanzheng; Hollingsworth, Peter; Dao, Zhiling; Luo, Guifen; Guo, Huijun; Ma, Yongpeng; Sun, Weibang (2019-07-01). "De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China". GigaScience. 8 (7). doi:10.1093/gigascience/giz085. PMC   6629541 . PMID   31307060.
  10. Mu, Weixue; Wei, Jinpu; Yang, Ting; Fan, Yannan; Cheng, Le; Yang, Jinlong; Mu, Ranchang; Liu, Jie; Zhao, Jianming; Sun, Weibang; Xu, Xun (2020). "The draft genome assembly of the critically endangered Nyssa yunnanensis, a plant species with extremely small populations endemic to Yunnan Province, China". Gigabyte. 2020: 1–12. doi: 10.46471/gigabyte.4 . PMC   9632040 .
  11. Avise, John C. (April 2010). "Perspective: conservation genetics enters the genomics era". Conservation Genetics. 11 (2): 665–669. doi:10.1007/s10592-009-0006-y. ISSN   1566-0621. S2CID   35157515.
  12. Steiner, Cynthia C.; Putnam, Andrea S.; Hoeck, Paquita E.A.; Ryder, Oliver A. (January 2013). "Conservation Genomics of Threatened Animal Species". Annual Review of Animal Biosciences . 1 (1): 261–281. doi:10.1146/annurev-animal-031412-103636. ISSN   2165-8102. PMID   25387020.
  13. Frankham, Richard (September 2010). "Challenges and opportunities of genetic approaches to biological conservation". Biological Conservation. 143 (9): 1919–1927. doi:10.1016/j.biocon.2010.05.011. ISSN   0006-3207.
  14. Shafer, Aaron B. A.; Wolf, Jochen B. W.; Alves, Paulo C.; Bergström, Linnea; Bruford, Michael W.; Brännström, Ioana; Colling, Guy; Dalén, Love; Meester, Luc De; Ekblom, Robert; Fawcett, Katie D. (2015-02-01). "Genomics and the challenging translation into conservation practice". Trends in Ecology & Evolution. 30 (2): 78–87. doi:10.1016/j.tree.2014.11.009. hdl: 10400.7/574 . ISSN   0169-5347. PMID   25534246.