Hypoxemia

Last updated
Hypoxemia
Other namesHypoxaemia
Venous and arterial blood.jpg
Blood with higher oxygen content appears bright red
Specialty Pulmonology

Hypoxemia is an abnormally low level of oxygen in the blood. [1] [2] More specifically, it is oxygen deficiency in arterial blood. [3] Hypoxemia has many causes, and often causes hypoxia as the blood is not supplying enough oxygen to the tissues of the body.

Contents

Definition

Hypoxemia refers to the low level of oxygen in blood, and the more general term hypoxia is an abnormally low oxygen content in any tissue or organ, or the body as a whole. [2] Hypoxemia can cause hypoxia (hypoxemic hypoxia), but hypoxia can also occur via other mechanisms, such as anemia. [4]

Hypoxemia is usually defined in terms of reduced partial pressure of oxygen (mm Hg) in arterial blood, but also in terms of reduced content of oxygen (ml oxygen per dl blood) or percentage saturation of hemoglobin (the oxygen-binding protein within red blood cells) with oxygen, which is either found singly or in combination. [2] [5]

While there is general agreement that an arterial blood gas measurement which shows that the partial pressure of oxygen is lower than normal constitutes hypoxemia, [5] [4] [6] there is less agreement concerning whether the oxygen content of blood is relevant in determining hypoxemia. This definition would include oxygen carried by hemoglobin. The oxygen content of blood is thus sometimes viewed as a measure of tissue delivery rather than hypoxemia. [6]

Just as extreme hypoxia can be called anoxia, extreme hypoxemia can be called anoxemia.

Signs and symptoms

In an acute context, hypoxemia can cause symptoms such as those in respiratory distress. These include breathlessness, an increased rate of breathing, use of the chest and abdominal muscles to breathe, and lip pursing. [7] :642

Chronic hypoxemia may be compensated or uncompensated. The compensation may cause symptoms to be overlooked initially, however, further disease or a stress such as any increase in oxygen demand may finally unmask the existing hypoxemia. In a compensated state, blood vessels supplying less-ventilated areas of the lung may selectively contract, to redirect the blood to areas of the lungs which are better ventilated. However, in a chronic context, and if the lungs are not well ventilated generally, this mechanism can result in pulmonary hypertension, overloading the right ventricle of the heart and causing cor pulmonale and right sided heart failure. Polycythemia can also occur. [7] In children, chronic hypoxemia may manifest as delayed growth, neurological development and motor development and decreased sleep quality with frequent sleep arousals. [8]

Other symptoms of hypoxemia may include cyanosis, digital clubbing, and symptoms that may relate to the cause of the hypoxemia, including cough and hemoptysis. [7] :642

Serious hypoxemia typically occurs when the partial pressure of oxygen in blood is less than 60 mmHg (8.0 kPa), the beginning of the steep portion of the oxygen–hemoglobin dissociation curve, where a small decrease in the partial pressure of oxygen results in a large decrease in the oxygen content of the blood. [4] [9] Severe hypoxia can lead to respiratory failure [7]

Causes

Hypoxemia refers to insufficient oxygen in the blood. Thus any cause that influences the rate or volume of air entering the lungs (ventilation) or any cause that influences the transfer of air from the lungs to the blood may cause hypoxemia. As well as these respiratory causes, cardiovascular causes such as shunts may also result in hypoxemia.

Hypoxemia is caused by five categories of etiologies: hypoventilation, ventilation/perfusion mismatch, right-to-left shunt, diffusion impairment, and low PO2. Low PO2 and hypoventilation are associated with a normal alveolar–arterial gradient (A-a gradient) whereas the other categories are associated with an increased A-a gradient. [10] :229

Ventilation

If the alveolar ventilation is low, there will not be enough oxygen delivered to the alveoli for the body's use. This can cause hypoxemia even if the lungs are normal, as the cause is in the brainstem's control of ventilation or in the body's inability to breathe effectively.

Respiratory drive

Respiration is controlled by centers in the medulla, which influence the rate of breathing and the depth of each breath. This is influenced by the blood level of carbon dioxide, as determined by central and peripheral chemoreceptors located in the central nervous system and carotid and aortic bodies, respectively. Hypoxia occurs when the breathing center doesn't function correctly or when the signal is not appropriate:

  • Strokes, epilepsy and cervical neck fractures can all damage the medullary respiratory centres that generates rhythmic impulses and transmit them along the phrenic nerve to the diaphragm, the muscle that is responsible for breathing.
  • A decreased respiratory drive can also be the result of metabolic alkalosis, a state of decreased carbon dioxide in the blood
  • Central sleep apnea. During sleep, the breathing centers of the brain can pause their activity, leading to prolonged periods of apnea with potentially serious consequences.
  • Hyperventilation followed by prolonged breath-holding. This hyperventilation, attempted by some swimmers, reduces the amount of carbon dioxide in the lungs. This reduces the urge to breathe. However, it also means that falling blood oxygen levels are not sensed, and can result in hypoxemia. [11]

Physical states

A variety of conditions that physically limit airflow can lead to hypoxemia.

Environmental oxygen

Oxygen-Hemoglobin Dissassociation Curve. Oxyhaemoglobin dissociation curve.png
Oxygen-Hemoglobin Dissassociation Curve.

In conditions where the proportion of oxygen in the air is low, or when the partial pressure of oxygen has decreased, less oxygen is present in the alveoli of the lungs. The alveolar oxygen is transferred to hemoglobin, a carrier protein inside red blood cells, with an efficiency that decreases with the partial pressure of oxygen in the air.

  • Altitude. The external partial pressure of oxygen decreases with altitude, for example in areas of high altitude or when flying. This decrease results in decreased carriage of oxygen by hemoglobin. [12] This is particularly seen as a cause of cerebral hypoxia and mountain sickness in climbers of Mount Everest and other peaks of extreme altitude. [13] [14] For example, at the peak of Mount Everest, the partial pressure of oxygen is just 43 mmHg, whereas at sea level the partial pressure is 150 mmHg. [15] For this reason, cabin pressure in aircraft is maintained at 5,000 to 6,000 feet (1500 to 1800 m). [16]
  • Diving. Hypoxia in diving can result from sudden surfacing. The partial pressures of gases increases when diving by one ATM every ten metres. This means that a partial pressure of oxygen sufficient to maintain good carriage by hemoglobin is possible at depth, even if it is insufficient at the surface. A diver that remains underwater will slowly consume their oxygen, and when surfacing, the partial pressure of oxygen may be insufficient (shallow water blackout). This may manifest at depth as deep water blackout.
  • Suffocation. Decreased concentration of oxygen in inspired air caused by reduced replacement of oxygen in the breathing mix.
  • Anaesthetics. Low partial pressure of oxygen in the lungs when switching from inhaled anesthesia to atmospheric air, due to the Fink effect, or diffusion hypoxia.
  • Air depleted of oxygen has also proven fatal. In the past, anesthesia machines have malfunctioned, delivering low-oxygen gas mixtures to patients. Additionally, oxygen in a confined space can be consumed if carbon dioxide scrubbers are used without sufficient attention to supplementing the oxygen which has been consumed.
  • Hypoxic or anoxic breathing gas mixtures, and exposure to a vacuum or other extreme low pressure environment will remove oxygen from the blood in the alveoli. [17]

Perfusion

Ventilation-perfusion mismatch

This refers to a disruption in the ventilation/perfusion equilibrium. Oxygen entering the lungs typically diffuses across the alveolar-capillary membrane into blood. However this equilibration does not occur when the alveolus is insufficiently ventilated, and as a consequence the blood exiting that alveolus is relatively hypoxemic. When such blood is added to blood from well ventilated alveoli, the mix has a lower oxygen partial pressure than the alveolar air, and so the A-a difference develops. Examples of states that can cause a ventilation-perfusion mismatch include:

  • Exercise. Whilst modest activity and exercise improves ventilation-perfusion matching, [18] hypoxemia may develop during intense exercise as a result of preexisting lung diseases. [19] During exercise, almost half of the hypoxemia is due to diffusion limitations (again, on average). [20]
  • Aging. An increasingly poor match between ventilation and perfusion is seen with age, as well as a decreased ability to compensate for hypoxic states. [7] :646
  • Diseases that affect the pulmonary interstitium can also result in hypoxia, by affecting the ability of oxygen to diffuse into arteries. An example of these diseases is pulmonary fibrosis, where even at rest a fifth of the hypoxemia is due to diffusion limitations (on average). [20]
  • Diseases that result in acute or chronic respiratory distress can result in hypoxia. These diseases can be acute in onset (such as obstruction by inhaling something or a pulmonary embolus) or chronic (such as chronic obstructive pulmonary disease).
  • Cirrhosis can be complicated by refractory hypoxemia due to high rates of blood flow through the lung, resulting in ventilation-perfusion mismatch. [21]
  • Fat embolism syndrome, in which fat droplets are deposited in the pulmonary capillary bed. [22]

Shunting

Shunting refers to blood that bypasses the pulmonary circulation, meaning that the blood does not receive oxygen from the alveoli. In general, a shunt may be within the heart or lungs, and cannot be corrected by administering oxygen alone. Shunting may occur in normal states:

  • Anatomic shunting, occurring via the bronchial circulation, which provides blood to the tissues of the lung. Shunting also occurs by the smallest cardiac veins, which empty directly into the left ventricle.
  • Physiological shunts, occur due to the effect of gravity. The highest concentration of blood in the pulmonary circulation occurs in the bases of the pulmonary tree compared to the highest pressure of gas in the apexes of the lungs. Alveoli may not be ventilated in shallow breathing.

Shunting may also occur in disease states:

Exercise

Exercise-induced arterial hypoxemia occurs during exercise when a trained individual exhibits an arterial oxygen saturation below 93%. It occurs in fit, healthy individuals of varying ages and genders. [25] Adaptations due to training include an increased cardiac output from cardiac hypertrophy, improved venous return, and metabolic vasodilation of muscles, and an increased VO2 max. There must be a corresponding increase in VCO2 thus a necessity to clear the carbon dioxide to prevent a metabolic acidosis. Hypoxemia occurs in these individuals due to increased pulmonary blood flow causing:

Physiology

Key to understanding whether the lung is involved in a particular case of hypoxemia is the difference between the alveolar and the arterial oxygen levels; this A-a difference is often called the A-a gradient and is normally small. The arterial oxygen partial pressure is obtained directly from an arterial blood gas determination. The oxygen contained in the alveolar air can be calculated because it will be directly proportional to its fractional composition in air. Since the airways humidify (and so dilute) the inhaled air, the barometric pressure of the atmosphere is reduced by the vapor pressure of water.

History

The term hypoxemia was originally used to describe low blood oxygen occurring at high altitudes and was defined generally as defective oxygenation of the blood. [26]

In modern times there are a lot of tools to detects hypoxemia including smartwatches. In 2022 a research has shown smartwatches can detect short-time hypoxemia as well as standard medical devices. [27] [28]

Related Research Articles

<span class="mw-page-title-main">Hypoxia (medicine)</span> Medical condition of lack of oxygen in the tissues

Hypoxia is a condition in which the body or a region of the body is deprived of adequate oxygen supply at the tissue level. Hypoxia may be classified as either generalized, affecting the whole body, or local, affecting a region of the body. Although hypoxia is often a pathological condition, variations in arterial oxygen concentrations can be part of the normal physiology, for example, during strenuous physical exercise.

<span class="mw-page-title-main">Respiratory system</span> Biological system in animals and plants for gas exchange

The respiratory system is a biological system consisting of specific organs and structures used for gas exchange in animals and plants. The anatomy and physiology that make this happen varies greatly, depending on the size of the organism, the environment in which it lives and its evolutionary history. In land animals, the respiratory surface is internalized as linings of the lungs. Gas exchange in the lungs occurs in millions of small air sacs; in mammals and reptiles, these are called alveoli, and in birds, they are known as atria. These microscopic air sacs have a very rich blood supply, thus bringing the air into close contact with the blood. These air sacs communicate with the external environment via a system of airways, or hollow tubes, of which the largest is the trachea, which branches in the middle of the chest into the two main bronchi. These enter the lungs where they branch into progressively narrower secondary and tertiary bronchi that branch into numerous smaller tubes, the bronchioles. In birds, the bronchioles are termed parabronchi. It is the bronchioles, or parabronchi that generally open into the microscopic alveoli in mammals and atria in birds. Air has to be pumped from the environment into the alveoli or atria by the process of breathing which involves the muscles of respiration.

<span class="mw-page-title-main">Respiratory failure</span> Inadequate gas exchange by the respiratory system

Respiratory failure results from inadequate gas exchange by the respiratory system, meaning that the arterial oxygen, carbon dioxide, or both cannot be kept at normal levels. A drop in the oxygen carried in the blood is known as hypoxemia; a rise in arterial carbon dioxide levels is called hypercapnia. Respiratory failure is classified as either Type 1 or Type 2, based on whether there is a high carbon dioxide level, and can be acute or chronic. In clinical trials, the definition of respiratory failure usually includes increased respiratory rate, abnormal blood gases, and evidence of increased work of breathing. Respiratory failure causes an altered mental status due to ischemia in the brain.

Diffusing capacity of the lung (DL) measures the transfer of gas from air in the lung, to the red blood cells in lung blood vessels. It is part of a comprehensive series of pulmonary function tests to determine the overall ability of the lung to transport gas into and out of the blood. DL, especially DLCO, is reduced in certain diseases of the lung and heart. DLCO measurement has been standardized according to a position paper by a task force of the European Respiratory and American Thoracic Societies.

Dead space is the volume of air that is inhaled that does not take part in the gas exchange, because it either remains in the conducting airways or reaches alveoli that are not perfused or poorly perfused. It means that not all the air in each breath is available for the exchange of oxygen and carbon dioxide. Mammals breathe in and out of their lungs, wasting that part of the inhalation which remains in the conducting airways where no gas exchange can occur.

<span class="mw-page-title-main">Acute respiratory distress syndrome</span> Human disease

Acute respiratory distress syndrome (ARDS) is a type of respiratory failure characterized by rapid onset of widespread inflammation in the lungs. Symptoms include shortness of breath (dyspnea), rapid breathing (tachypnea), and bluish skin coloration (cyanosis). For those who survive, a decreased quality of life is common.

In physiology, respiration is the movement of oxygen from the outside environment to the cells within tissues, and the removal of carbon dioxide in the opposite direction that's to the environment.

<span class="mw-page-title-main">Generalized hypoxia</span> Medical condition of oxygen deprivation

Generalized hypoxia is a medical condition in which the tissues of the body are deprived of the necessary levels of oxygen due to an insufficient supply of oxygen, which may be due to the composition or pressure of the breathing gas, decreased lung ventilation, or respiratory disease, any of which may cause a lower than normal oxygen content in the arterial blood, and consequently a reduced supply of oxygen to all tissues perfused by the arterial blood. This usage is in contradistinction to localized hypoxia, in which only an associated group of tissues, usually with a common blood supply, are affected, usually due to an insufficient or reduced blood supply to those tissues. Generalized hypoxia is also used as a synonym for hypoxic hypoxia This is not to be confused with hypoxemia, which refers to low levels of oxygen in the blood, although the two conditions often occur simultaneously, since a decrease in blood oxygen typically corresponds to a decrease in oxygen in the surrounding tissue. However, hypoxia may be present without hypoxemia, and vice versa, as in the case of infarction. Several other classes of medical hypoxia exist.

Hyperoxia occurs when cells, tissues and organs are exposed to an excess supply of oxygen (O2) or higher than normal partial pressure of oxygen.

In medicine, hepatopulmonary syndrome is a syndrome of shortness of breath and hypoxemia caused by vasodilation in the lungs of patients with liver disease. Dyspnea and hypoxemia are worse in the upright position.

In respiratory physiology, the ventilation/perfusion ratio is a ratio used to assess the efficiency and adequacy of the ventilation-perfusion coupling and thus the matching of two variables:

A pulmonary shunt is the passage of deoxygenated blood from the right side of the heart to the left without participation in gas exchange in the pulmonary capillaries. It is a pathological condition that results when the alveoli of parts of the lungs are perfused with blood as normal, but ventilation fails to supply the perfused region. In other words, the ventilation/perfusion ratio of those areas is zero.

The factors that determine the values for alveolar pO2 and pCO2 are:

The multiple inert gas elimination technique (MIGET) is a medical technique used mainly in pulmonology that involves measuring the concentrations of various infused, inert gases in mixed venous blood, arterial blood, and expired gas of a subject. The technique quantifies true shunt, physiological dead space ventilation, ventilation versus blood flow ratios, and diffusion limitation.

The Alveolar–arterial gradient, is a measure of the difference between the alveolar concentration (A) of oxygen and the arterial (a) concentration of oxygen. It is a useful parameter for narrowing the differential diagnosis of hypoxemia.

<span class="mw-page-title-main">Pulmonary contusion</span> Internal bruise of the lungs

A pulmonary contusion, also known as lung contusion, is a bruise of the lung, caused by chest trauma. As a result of damage to capillaries, blood and other fluids accumulate in the lung tissue. The excess fluid interferes with gas exchange, potentially leading to inadequate oxygen levels (hypoxia). Unlike pulmonary laceration, another type of lung injury, pulmonary contusion does not involve a cut or tear of the lung tissue.

<span class="mw-page-title-main">Breathing</span> Process of moving air in and out of the lungs

Breathing is the process of moving air into and from the lungs to facilitate gas exchange with the internal environment, mostly to flush out carbon dioxide and bring in oxygen.

In the respiratory system, ventilation/perfusion (V/Q) mismatch refers to the pathological discrepancy between ventilation (V) and perfusion (Q) resulting in an abnormal ventilation/perfusion (V/Q) ratio. Ventilation is a measure of the amount of inhaled air that reaches the alveoli, while perfusion is a measure of the amount of deoxygenated blood that reaches the alveoli through the capillary beds. Under normal conditions, ventilation-perfusion coupling keeps ventilation (V) at approximately 4 L/min and normal perfusion (Q) at approximately 5 L/min. Thus, at rest, a normal V/Q ratio is 0.8. Any deviation from this value is considered a V/Q mismatch. Maintenance of the V/Q ratio is crucial for preservation of effective pulmonary gas exchange and maintenance of oxygenation levels. A mismatch can contribute to hypoxemia and often signifies the presence or worsening of an underlying pulmonary condition.

<span class="mw-page-title-main">Pathophysiology of acute respiratory distress syndrome</span>

The pathophysiology of acute respiratory distress syndrome involves fluid accumulation in the lungs not explained by heart failure. It is typically provoked by an acute injury to the lungs that results in flooding of the lungs' microscopic air sacs responsible for the exchange of gases such as oxygen and carbon dioxide with capillaries in the lungs. Additional common findings in ARDS include partial collapse of the lungs (atelectasis) and low levels of oxygen in the blood (hypoxemia). The clinical syndrome is associated with pathological findings including pneumonia, eosinophilic pneumonia, cryptogenic organizing pneumonia, acute fibrinous organizing pneumonia, and diffuse alveolar damage (DAD). Of these, the pathology most commonly associated with ARDS is DAD, which is characterized by a diffuse inflammation of lung tissue. The triggering insult to the tissue usually results in an initial release of chemical signals and other inflammatory mediators secreted by local epithelial and endothelial cells.

<span class="mw-page-title-main">Ventilation–perfusion coupling</span> Relationship between respiratory and cardiovascular processes

Ventilation-perfusion coupling is the relationship between ventilation and perfusion processes, which take place in the respiratory system and the cardiovascular system. Ventilation is the movement of gas during breathing, and perfusion is the process of pulmonary blood circulation, which delivers oxygen to body tissues. Anatomically, the lung structure, alveolar organization, and alveolar capillaries contribute to the physiological mechanism of ventilation and perfusion. Ventilation-perfusion coupling maintains a constant ventilation/perfusion ratio near 0.8 on average, while the regional variation exists within the lungs due to gravity. When the ratio gets above or below 0.8, it is considered abnormal ventilation-perfusion coupling, also known as a ventilation–perfusion mismatch. Lung diseases, cardiac shunts, and smoking can cause a ventilation-perfusion mismatch that results in significant symptoms and diseases, which can be treated through treatments like bronchodilators and oxygen therapy.

References

  1. Pollak CP, Thorpy MJ, Yager J (2010). The encyclopedia of sleep and sleep disorders (3rd ed.). New York, NY. p.  104. ISBN   9780816068333.{{cite book}}: CS1 maint: location missing publisher (link)
  2. 1 2 3 Martin L (1999). All you really need to know to interpret arterial blood gases (2nd ed.). Philadelphia: Lippincott Williams & Wilkins. p. xxvi. ISBN   978-0683306040.
  3. Eckman M (2010). Professional guide to pathophysiology (3rd ed.). Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins. p. 208. ISBN   978-1605477664.
  4. 1 2 3 Del Sorbo L, Martin EL, Ranieri VM (2010). "Hypoxemic Respiratory Failure". In Mason RJ, Broaddus VC, Martin TR, King TE, Schraufnagel D, Murray JF, Nadel JA (eds.). Murray & Nadel's Textbook of Respiratory Medicine (5th ed.). Philadelphia: Saunders Elsevier. ISBN   978-1-4160-4710-0.
  5. 1 2 Morris A, Kanner R, Crapo R, Gardner R (1984). Clinical Pulmonary Function Testing. A manual of uniform laboratory procedures (2nd ed.).
  6. 1 2 Wilson WC, Grande CM, Hoyt DB, eds. (2007). Critical care. New York: Informa Healthcare. ISBN   978-0-8247-2920-2.
  7. 1 2 3 4 5 Colledge NR, Walker BR, Ralston SH, eds. (2010). Davidson's principles and practice of medicine (21st ed.). Edinburgh: Churchill Livingstone/Elsevier. ISBN   978-0-7020-3085-7.
  8. Adde FV, Alvarez AE, Barbisan BN, Guimarães BR (Jan–Feb 2013). "Recommendations for long-term home oxygen therapy in children and adolescents". Jornal de Pediatria. 89 (1): 6–17. doi: 10.1016/j.jped.2013.02.003 . PMID   23544805.
  9. Schwartzstein R, Parker MJ (2006). Respiratory Physiology: A Clinical Approach. Philadelphia: Lippincott Williams & Wilkins. ISBN   978-0-7817-5748-5. OCLC   62302095.
  10. Harrison TR, Fauci AS, eds. (2008). Harrison's principles of internal medicine (17th ed.). New York: McGraw-Hill Medical. ISBN   978-0-07-147692-8.
  11. Craig AB (Fall 1976). "Summary of 58 cases of loss of consciousness during underwater swimming and diving". Medicine and Science in Sports. 8 (3): 171–175. doi: 10.1249/00005768-197600830-00007 . PMID   979564.
  12. Baillie K, Simpson A. "Altitude oxygen calculator". Apex (Altitude Physiology Expeditions). Archived from the original on 2017-06-11. Retrieved 2006-08-10. – Online interactive oxygen delivery calculator.
  13. West JB, Boyer SJ, Graber DJ, Hackett PH, Maret KH, Milledge JS, et al. (September 1983). "Maximal exercise at extreme altitudes on Mount Everest". Journal of Applied Physiology. 55 (3): 688–698. doi:10.1152/jappl.1983.55.3.688. hdl: 2434/176393 . PMID   6415008.
  14. Grocott MP, Martin DS, Levett DZ, McMorrow R, Windsor J, Montgomery HE (January 2009). "Arterial blood gases and oxygen content in climbers on Mount Everest". The New England Journal of Medicine. 360 (2): 140–149. doi: 10.1056/NEJMoa0801581 . PMID   19129527.
  15. West JB (2000). "Human limits for hypoxia. The physiological challenge of climbing Mt. Everest". Annals of the New York Academy of Sciences. 899 (1): 15–27. Bibcode:2000NYASA.899...15W. doi:10.1111/j.1749-6632.2000.tb06173.x. PMID   10863526. S2CID   21863823.
  16. Administrator. "Airlines are cutting costs – Are patients with respiratory diseases paying the price?". www.ersnet.org. Retrieved 2016-06-17.
  17. Landis, Geoffrey A. (7 August 2007). "Human Exposure to Vacuum". www.geoffreylandis.com. Archived from the original on 2009-07-21. Retrieved 2012-04-25.
  18. Whipp BJ, Wasserman K (September 1969). "Alveolar-arterial gas tension differences during graded exercise". Journal of Applied Physiology. 27 (3): 361–365. doi:10.1152/jappl.1969.27.3.361. PMID   5804133.
  19. Hopkins SR (2007). "Exercise Induced Arterial Hypoxemia: The role of Ventilation-Perfusion Inequality and Pulmonary Diffusion Limitation". Hypoxia and Exercise. Advances in Experimental Medicine and Biology. Vol. 588. Boston, MA: Springer. pp. 17–30. doi:10.1007/978-0-387-34817-9_3. ISBN   978-0-387-34816-2. PMID   17089876.
  20. 1 2 Agustí AG, Roca J, Gea J, Wagner PD, Xaubet A, Rodriguez-Roisin R (February 1991). "Mechanisms of gas-exchange impairment in idiopathic pulmonary fibrosis". The American Review of Respiratory Disease. 143 (2): 219–225. doi:10.1164/ajrccm/143.2.219. PMID   1990931.
  21. Agusti AG, Roca J, Rodriguez-Roisin R (March 1996). "Mechanisms of gas exchange impairment in patients with liver cirrhosis". Clinics in Chest Medicine. 17 (1): 49–66. doi:10.1016/s0272-5231(05)70298-7. PMID   8665790.
  22. Adeyinka A, Pierre L (September 2022). "Fat Embolism". StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.
  23. Huang YC, Fracica PJ, Simonson SG, Crapo JD, Young SL, Welty-Wolf KE, et al. (August 1996). "VA/Q abnormalities during gram negative sepsis". Respiration Physiology. 105 (1–2): 109–121. doi:10.1016/0034-5687(96)00039-4. PMID   8897657.
  24. Thompson BT, Chambers RC, Liu KD (August 2017). "Acute Respiratory Distress Syndrome". The New England Journal of Medicine. 377 (6): 562–572. doi:10.1056/NEJMra1608077. PMID   28792873. S2CID   4909513.
  25. Dempsey JA, Wagner PD (December 1999). "Exercise-induced arterial hypoxemia". Journal of Applied Physiology. 87 (6): 1997–2006. doi:10.1152/jappl.1999.87.6.1997. PMID   10601141. S2CID   6788078.
  26. Henry Power and Leonard W. Sedgwick (1888) New Sydenham Society's Lexicon of Medicine and the Allied Sciences (Based on Maye's Lexicon). Vol III. London: New Sydenham Society.
  27. Rafl J, Bachman TE, Rafl-Huttova V, Walzel S, Rozanek M (2022). "Commercial smartwatch with pulse oximeter detects short-time hypoxemia as well as standard medical-grade device: Validation study". Digital Health. 8: 20552076221132127. doi:10.1177/20552076221132127. PMC   9554125 . PMID   36249475.
  28. Charles University Environment Center. "Commercial smartwatch provides reliable blood oxygen saturation values as compared to a medical-grade pulse oximeter". medicalxpress.com. Retrieved 2022-11-17.

Further reading