IUPAC nomenclature of inorganic chemistry

Last updated

In chemical nomenclature, the IUPAC nomenclature of inorganic chemistry is a systematic method of naming inorganic chemical compounds, as recommended by the International Union of Pure and Applied Chemistry (IUPAC). It is published in Nomenclature of Inorganic Chemistry (which is informally called the Red Book). [1] Ideally, every inorganic compound should have a name from which an unambiguous formula can be determined. There is also an IUPAC nomenclature of organic chemistry.

Contents

System

The names "caffeine" and "3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione" both signify the same chemical compound. The systematic name encodes the structure and composition of the caffeine molecule in some detail, and provides an unambiguous reference to this compound, whereas the name "caffeine" just names it. These advantages make the systematic name far superior to the common name when absolute clarity and precision are required. However, for the sake of brevity, even professional chemists will use the non-systematic name almost all of the time, because caffeine is a well-known common chemical with a unique structure. Similarly, H2O is most often simply called water in English, though other chemical names do exist.

  1. Single atom anions are named with an -ide suffix: for example, H is hydride.
  2. Compounds with a positive ion (cation): The name of the compound is simply the cation's name (usually the same as the element's), followed by the anion. For example, NaCl is sodium chloride , and CaF2 is calcium fluoride .
  3. Cations of transition metals able to take multiple charges are labeled with Roman numerals in parentheses to indicate their charge. For example, Cu+ is copper(I), Cu2+ is copper(II). An older, deprecated notation is to append -ous or -ic to the root of the Latin name to name ions with a lesser or greater charge. Under this naming convention, Cu+ is cuprous and Cu2+ is cupric. For naming metal complexes see the page on complex (chemistry).
  4. Oxyanions (polyatomic anions containing oxygen) are named with -ite or -ate, for a lesser or greater quantity of oxygen, respectively. For example, NO
    2
    is nitrite, while NO
    3
    is nitrate. If four oxyanions are possible, the prefixes hypo- and per- are used: hypochlorite is ClO, perchlorate is ClO
    4
    .
  5. The prefix bi- is a deprecated way of indicating the presence of a single hydrogen ion, as in "sodium bicarbonate" (NaHCO3). The modern method specifically names the hydrogen atom. Thus, NaHCO3 would be pronounced sodium hydrogen carbonate.

Positively charged ions are called cations and negatively charged ions are called anions. The cation is always named first. Ions can be metals, non-metals or polyatomic ions. Therefore, the name of the metal or positive polyatomic ion is followed by the name of the non-metal or negative polyatomic ion. The positive ion retains its element name whereas for a single non-metal anion the ending is changed to -ide.

Example: sodium chloride, potassium oxide, or calcium carbonate.

When the metal has more than one possible ionic charge or oxidation number the name becomes ambiguous. In these cases the oxidation number (the same as the charge) of the metal ion is represented by a Roman numeral in parentheses immediately following the metal ion name. For example, in uranium(VI) fluoride the oxidation number of uranium is 6. Another example is the iron oxides. FeO is iron(II) oxide and Fe2O3 is iron(III) oxide.

An older system used prefixes and suffixes to indicate the oxidation number, according to the following scheme:

Oxidation stateCations and acidsAnions
Lowesthypo- -oushypo- -ite
 -ous-ite
 -ic-ate
 per- -icper- -ate
Highesthyper- -ichyper- -ate

Thus the four oxyacids of chlorine are called hypochlorous acid (HOCl), chlorous acid (HOClO), chloric acid (HOClO2) and perchloric acid (HOClO3), and their respective conjugate bases are hypochlorite, chlorite, chlorate and perchlorate ions. This system has partially fallen out of use, but survives in the common names of many chemical compounds: the modern literature contains few references to "ferric chloride" (instead calling it "iron(III) chloride"), but names like "potassium permanganate" (instead of "potassium manganate(VII)") and "sulfuric acid" abound.

Traditional naming

Simple ionic compounds

An ionic compound is named by its cation followed by its anion. See polyatomic ion for a list of possible ions.

For cations that take on multiple charges, the charge is written using Roman numerals in parentheses immediately following the element name. For example, Cu(NO3)2 is copper(II) nitrate , because the charge of two nitrate ions (NO
3
) is 2 × −1 = −2, and since the net charge of the ionic compound must be zero, the Cu ion has a 2+ charge. This compound is therefore copper(II) nitrate. In the case of cations with a +4 oxidation state, the only acceptable format for the Roman numeral 4 is IV and not IIII.

The Roman numerals in fact show the oxidation number, but in simple ionic compounds (i.e., not metal complexes) this will always equal the ionic charge on the metal. For a simple overview see Archived 2008-10-16 at the Wayback Machine , for more details see selected pages from IUPAC rules for naming inorganic compounds Archived 2016-03-03 at the Wayback Machine .

List of common ion names

Monatomic anions:

Cl
chloride
S2−
sulfide
P3−
phosphide

Polyatomic ions:

NH+
4
ammonium
H
3
O+
hydronium
NO
3
nitrate
NO
2
nitrite
ClO
hypochlorite
ClO
2
chlorite
ClO
3
chlorate
ClO
4
perchlorate
SO2−
3
sulfite
SO2−
4
sulfate
S
2
O2–
3
thiosulfate
HSO
3
hydrogen sulfite (or bisulfite)
HCO
3
hydrogen carbonate (or bicarbonate)
CO2−
3
carbonate
PO3−
4
phosphate
HPO2−
4
hydrogen phosphate
H
2
PO
4
dihydrogen phosphate
CrO2−
4
chromate
Cr
2
O2−
7
dichromate
BO3−
3
borate
AsO3−
4
arsenate
C
2
O2−
4
oxalate
CN
cyanide
SCN
thiocyanate
MnO
4
permanganate

Hydrates

Hydrates are ionic compounds that have absorbed water. They are named as the ionic compound followed by a numerical prefix and -hydrate. The numerical prefixes used are listed below (see IUPAC numerical multiplier):

  1. mono-
  2. di-
  3. tri-
  4. tetra-
  5. penta-
  6. hexa-
  7. hepta-
  8. octa-
  9. nona-
  10. deca-

For example, CuSO4·5H2O is "copper(II) sulfate pentahydrate".

Molecular compounds

Inorganic molecular compounds are named with a prefix (see list above) before each element. The more electronegative element is written last and with an -ide suffix. For example, H2O (water) can be called dihydrogen monoxide. Organic molecules do not follow this rule. In addition, the prefix mono- is not used with the first element; for example, SO2 is sulfur dioxide, not "monosulfur dioxide". Sometimes prefixes are shortened when the ending vowel of the prefix "conflicts" with a starting vowel in the compound. This makes the name easier to pronounce; for example, CO is "carbon monoxide" (as opposed to "monooxide").

Common exceptions

The "a" of the penta- prefix is not dropped before a vowel. As the IUPAC Red Book 2005 page 69 states, "The final vowels of multiplicative prefixes should not be elided (although 'monoxide', rather than 'monooxide', is an allowed exception because of general usage)."

There are a number of exceptions and special cases that violate the above rules. Sometimes the prefix is left off the initial atom: I2O5 is known as iodine pentaoxide, but it should be called diiodine pentaoxide. N2O3 is called nitrogen sesquioxide (sesqui- means 1+12).

The main oxide of phosphorus is called phosphorus pentaoxide . It should actually be diphosphorus pentaoxide, but it is assumed that there are two phosphorus atoms (P2O5), as they are needed in order to balance the oxidation numbers of the five oxygen atoms. However, people have known for years that the real form of the molecule is P4O10, not P2O5, yet it is not normally called tetraphosphorus decaoxide.

In writing formulas, ammonia is NH3 even though nitrogen is more electronegative (in line with the convention used by IUPAC as detailed in Table VI of the red book). Likewise, methane is written as CH4 even though carbon is more electronegative (Hill system).

Nomenclature of Inorganic Chemistry

The front cover of the 2005 edition of the Red Book RedBookCover.jpg
The front cover of the 2005 edition of the Red Book

Nomenclature of Inorganic Chemistry, commonly referred to by chemists as the Red Book, is a collection of recommendations on IUPAC nomenclature, published at irregular intervals by the IUPAC. The last full edition was published in 2005, [2] in both paper and electronic versions.

Published editions
Release yearTitlePublisherISBN
2005 Recommendations 2005 (Red Book) RSC Publishing0-85404-438-8
2001Recommendations 2000 (Red Book II)
(supplement)
RSC Publishing0-85404-487-6
1990Recommendations 1990 (Red Book I)Blackwell0-632-02494-1
1971Definitive Rules 1970   Butterworth0-408-70168-4
19591957 RulesButterworth
1940/19411940 RulesScientific journals

See also

Related Research Articles

<span class="mw-page-title-main">Carbonate</span> Salt of carbonic acid

A carbonate is a salt of carbonic acid (H2CO3), characterized by the presence of the carbonate ion, a polyatomic ion with the formula CO2−3. The word carbonate may also refer to a carbonate ester, an organic compound containing the carbonate group C(=O)(O–)2.

In chemistry, a chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecule, using chemical element symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, commas and plus (+) and minus (−) signs. These are limited to a single typographic line of symbols, which may include subscripts and superscripts. A chemical formula is not a chemical name, and it contains no words. Although a chemical formula may imply certain simple chemical structures, it is not the same as a full chemical structural formula. Chemical formulae can fully specify the structure of only the simplest of molecules and chemical substances, and are generally more limited in power than chemical names and structural formulae.

<span class="mw-page-title-main">Coordination complex</span> Molecule or ion containing ligands datively bonded to a central metallic atom

A coordination complex consists of a central atom or ion, which is usually metallic and is called the coordination centre, and a surrounding array of bound molecules or ions, that are in turn known as ligands or complexing agents. Many metal-containing compounds, especially those that include transition metals, are coordination complexes.

<span class="mw-page-title-main">Hydroxide</span> Chemical compound

Hydroxide is a diatomic anion with chemical formula OH. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It functions as a base, a ligand, a nucleophile, and a catalyst. The hydroxide ion forms salts, some of which dissociate in aqueous solution, liberating solvated hydroxide ions. Sodium hydroxide is a multi-million-ton per annum commodity chemical. The corresponding electrically neutral compound HO is the hydroxyl radical. The corresponding covalently bound group –OH of atoms is the hydroxy group. Both the hydroxide ion and hydroxy group are nucleophiles and can act as catalysts in organic chemistry.

<span class="mw-page-title-main">Inorganic chemistry</span> Field of chemistry

Inorganic chemistry deals with synthesis and behavior of inorganic and organometallic compounds. This field covers chemical compounds that are not carbon-based, which are the subjects of organic chemistry. The distinction between the two disciplines is far from absolute, as there is much overlap in the subdiscipline of organometallic chemistry. It has applications in every aspect of the chemical industry, including catalysis, materials science, pigments, surfactants, coatings, medications, fuels, and agriculture.

<span class="mw-page-title-main">Polyatomic ion</span> Ion containing two or more atoms

A polyatomic ion, also known as a molecular ion, is a covalent bonded set of two or more atoms, or of a metal complex, that can be considered to behave as a single unit and that has a net charge that is not zero. The term molecule may or may not be used to refer to a polyatomic ion, depending on the definition used. The prefix poly- carries the meaning "many" in Greek, but even ions of two atoms are commonly described as polyatomic.

In chemistry, a salt is a chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a compound with no net electric charge. A common example is table salt, with positively charged sodium ions and negatively charged chloride ions.

In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation of an atom in a chemical compound. Conceptually, the oxidation state may be positive, negative or zero. While fully ionic bonds are not found in nature, many bonds exhibit strong ionicity, making oxidation state a useful predictor of charge.

<span class="mw-page-title-main">Ammonium</span> Polyatomic ion (NH₄, charge +1)

The ammonium cation is a positively-charged polyatomic ion with the chemical formula NH+4 or [NH4]+. It is formed by the protonation of ammonia. Ammonium is also a general name for positively charged or protonated substituted amines and quaternary ammonium cations, where one or more hydrogen atoms are replaced by organic groups.

<span class="mw-page-title-main">Acyl group</span> Chemical group (R–C=O)

In chemistry, an acyl group is a moiety derived by the removal of one or more hydroxyl groups from an oxoacid, including inorganic acids. It contains a double-bonded oxygen atom and an alkyl group. In organic chemistry, the acyl group is usually derived from a carboxylic acid, in which case it has the formula RCO−, where R represents an alkyl group that is linked to the carbon atom of the group by a single bond. Although the term is almost always applied to organic compounds, acyl groups can in principle be derived from other types of acids such as sulfonic acids and phosphonic acids. In the most common arrangement, acyl groups are attached to a larger molecular fragment, in which case the carbon and oxygen atoms are linked by a double bond.

<span class="mw-page-title-main">Sulfate</span> Oxyanion with a central atom of sulfur surrounded by 4 oxygen atoms

The sulfate or sulphate ion is a polyatomic anion with the empirical formula SO2−4. Salts, acid derivatives, and peroxides of sulfate are widely used in industry. Sulfates occur widely in everyday life. Sulfates are salts of sulfuric acid and many are prepared from that acid.

In chemistry, a hydride is formally the anion of hydrogen (H). The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride of nitrogen, etc. For inorganic chemists, hydrides refer to compounds and ions in which hydrogen is covalently attached to a less electronegative element. In such cases, the H centre has nucleophilic character, which contrasts with the protic character of acids. The hydride anion is very rarely observed.

<span class="mw-page-title-main">Ionic compound</span> Chemical compound involving ionic bonding

In chemistry, an ionic compound is a chemical compound composed of ions held together by electrostatic forces termed ionic bonding. The compound is neutral overall, but consists of positively charged ions called cations and negatively charged ions called anions. These can be simple ions such as the sodium (Na+) and chloride (Cl) in sodium chloride, or polyatomic species such as the ammonium (NH+
4
) and carbonate (CO2−
3
) ions in ammonium carbonate. Individual ions within an ionic compound usually have multiple nearest neighbours, so are not considered to be part of molecules, but instead part of a continuous three-dimensional network. Ionic compounds usually form crystalline structures when solid.

In chemistry, the valence or valency of an element is the measure of its combining capacity with other atoms when it forms chemical compounds or molecules.

In chemistry an antimonate is a compound which contains a metallic element, oxygen, and antimony in an oxidation state of +5. These compounds adopt polymeric structures with M-O-Sb linkages. They can be considered to be derivatives of the hypothetical antimonic acid H3SbO4, or combinations of metal oxides and antimony pentoxide, Sb2O5.

A chemical nomenclature is a set of rules to generate systematic names for chemical compounds. The nomenclature used most frequently worldwide is the one created and developed by the International Union of Pure and Applied Chemistry (IUPAC).

An oxyacid, oxoacid, or ternary acid is an acid that contains oxygen. Specifically, it is a compound that contains hydrogen, oxygen, and at least one other element, with at least one hydrogen atom bonded to oxygen that can dissociate to produce the H+ cation and the anion of the acid.

Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005 is the 2005 version of Nomenclature of Inorganic Chemistry. It is a collection of rules for naming inorganic compounds, as recommended by the International Union of Pure and Applied Chemistry (IUPAC).

<span class="mw-page-title-main">Ion</span> Particle, atom or molecule with a net electrical charge

An ion is an atom or molecule with a net electrical charge.

<span class="mw-page-title-main">Chemical compound</span> Substance composed of multiple elements that are chemically bonded

A chemical compound is a chemical substance composed of many identical molecules containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element is therefore not a compound. A compound can be transformed into a different substance by a chemical reaction, which may involve interactions with other substances. In this process, bonds between atoms may be broken and/or new bonds formed.

References

  1. Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005 - Full text (PDF)
    2004 version with separate chapters as pdf: IUPAC Provisional Recommendations for the Nomenclature of Inorganic Chemistry (2004) Archived 2008-02-19 at the Wayback Machine
  2. International Union of Pure and Applied Chemistry (2005). Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005). Cambridge (UK): RSC IUPAC . ISBN   0-85404-438-8 . Electronic version.