Near-ring

Last updated

In mathematics, a near-ring (also near ring or nearring) is an algebraic structure similar to a ring but satisfying fewer axioms. Near-rings arise naturally from functions on groups.

Contents

Definition

A set N together with two binary operations + (called addition ) and ⋅ (called multiplication ) is called a (right) near-ring if:

Similarly, it is possible to define a left near-ring by replacing the right distributive law by the corresponding left distributive law. Both right and left near-rings occur in the literature; for instance, the book of Pilz [2] uses right near-rings, while the book of Clay [3] uses left near-rings.

An immediate consequence of this one-sided distributive law is that it is true that 0⋅x = 0 but it is not necessarily true that x⋅0 = 0 for any x in N. Another immediate consequence is that (x)⋅y = (xy) for any x, y in N, but it is not necessary that x⋅(y) = (xy). A near-ring is a rng if and only if addition is commutative and multiplication is also distributive over addition on the left. If the near-ring has a multiplicative identity, then distributivity on both sides is sufficient, and commutativity of addition follows automatically.

Mappings from a group to itself

Let G be a group, written additively but not necessarily abelian, and let M(G) be the set {f | f : GG} of all functions from G to G. An addition operation can be defined on M(G): given f, g in M(G), then the mapping f + g from G to G is given by (f + g)(x) = f(x) + g(x) for all x in G. Then (M(G), +) is also a group, which is abelian if and only if G is abelian. Taking the composition of mappings as the product ⋅, M(G) becomes a near-ring.

The 0 element of the near-ring M(G) is the zero map, i.e., the mapping which takes every element of G to the identity element of G. The additive inverse −f of f in M(G) coincides with the natural pointwise definition, that is, (−f)(x) = −(f(x)) for all x in G.

If G has at least two elements, then M(G) is not a ring, even if G is abelian. (Consider a constant mapping g from G to a fixed element g ≠ 0 of G; then g⋅0 = g ≠ 0.) However, there is a subset E(G) of M(G) consisting of all group endomorphisms of G, that is, all maps f : GG such that f(x + y) = f(x) + f(y) for all x, y in G. If (G, +) is abelian, both near-ring operations on M(G) are closed on E(G), and (E(G), +, ⋅) is a ring. If (G, +) is nonabelian, E(G) is generally not closed under the near-ring operations; but the closure of E(G) under the near-ring operations is a near-ring.

Many subsets of M(G) form interesting and useful near-rings. For example: [1]

Further examples occur if the group has further structure, for example:

Every near-ring is isomorphic to a subnear-ring of M(G) for some G.

Applications

Many applications involve the subclass of near-rings known as near-fields; for these see the article on near-fields.

There are various applications of proper near-rings, i.e., those that are neither rings nor near-fields.

The best known is to balanced incomplete block designs [2] using planar near-rings. These are a way to obtain difference families using the orbits of a fixed-point-free automorphism group of a group. James R. Clay and others have extended these ideas to more general geometrical constructions. [3]

See also

Related Research Articles

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type. The word homomorphism comes from the Ancient Greek language: ὁμός meaning "same" and μορφή meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).

<span class="mw-page-title-main">Monoid</span> Algebraic structure with an associative operation and an identity element

In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0.

<span class="mw-page-title-main">Semigroup</span> Algebraic structure consisting of a set with an associative binary operation

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it.

In mathematics, the concept of an inverse element generalises the concepts of opposite and reciprocal of numbers.

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

In mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ring of X, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity.

In mathematics, an algebraic structure consists of a nonempty set A, a collection of operations on A, and a finite set of identities, known as axioms, that these operations must satisfy.

In abstract algebra, a magma, binar, or, rarely, groupoid is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation that must be closed by definition. No other properties are imposed.

<span class="mw-page-title-main">Additive inverse</span> Number that, when added to the original number, yields zero

In mathematics, the additive inverse of a number a is the number that, when added to a, yields zero. The operation taking a number to its additive inverse is known as sign change or negation. For a real number, it reverses its sign: the additive inverse of a positive number is negative, and the additive inverse of a negative number is positive. Zero is the additive inverse of itself.

Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.

<span class="mw-page-title-main">Module (mathematics)</span> Generalization of vector spaces from fields to rings

In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers.

In algebra, a unit or invertible element of a ring is an invertible element for the multiplication of the ring. That is, an element u of a ring R is a unit if there exists v in R such that

In abstract algebra, a semiring is an algebraic structure. It is a generalization of a ring, dropping the requirement that each element must have an additive inverse. At the same time, it is a generalization of bounded distributive lattices.

In abstract algebra, a medial magma or medial groupoid is a magma or groupoid (that is, a set with a binary operation) that satisfies the identity

In mathematics, and more specifically in abstract algebra, a rng is an algebraic structure satisfying the same properties as a ring, but without assuming the existence of a multiplicative identity. The term rng is meant to suggest that it is a ring without i, that is, without the requirement for an identity element.

In mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context.

In mathematics, a near-field is an algebraic structure similar to a division ring, except that it has only one of the two distributive laws. Alternatively, a near-field is a near-ring in which there is a multiplicative identity and every non-zero element has a multiplicative inverse.

In mathematics, many types of algebraic structures are studied. Abstract algebra is primarily the study of specific algebraic structures and their properties. Algebraic structures may be viewed in different ways, however the common starting point of algebra texts is that an algebraic object incorporates one or more sets with one or more binary operations or unary operations satisfying a collection of axioms.

In mathematics, a semifield is an algebraic structure with two binary operations, addition and multiplication, which is similar to a field, but with some axioms relaxed.

In mathematics, a near-semiring, also called a seminearring, is an algebraic structure more general than a near-ring or a semiring. Near-semirings arise naturally from functions on monoids.

References

  1. 1 2 G. Pilz, (1982), "Near-Rings: What They Are and What They Are Good For" in Contemp. Math., 9, pp. 97–119. Amer. Math. Soc., Providence, R.I., 1981.
  2. 1 2 G. Pilz, "Near-rings, the Theory and its Applications", North-Holland, Amsterdam, 2nd edition, (1983).
  3. 1 2 J. Clay, "Nearrings: Geneses and applications", Oxford, (1992).