Pickover stalk

Last updated
Example of Pickover stalks in a detail of the Mandelbrot set Pickover-stalks.png
Example of Pickover stalks in a detail of the Mandelbrot set

Pickover stalks are certain kinds of details to be found empirically in the Mandelbrot set, in the study of fractal geometry. [1] They are so named after the researcher Clifford Pickover, whose "epsilon cross" method was instrumental in their discovery. An "epsilon cross" is a cross-shaped orbit trap.

Contents

According to Vepstas (1997) "Pickover hit on the novel concept of looking to see how closely the orbits of interior points come to the x and y axes. In these pictures, the closer that the point approaches, the higher up the color scale, with red denoting the closest approach. The logarithm of the distance is taken to accentuate the details". [2]

Biomorphs

An example of the sort of biomorphic forms yielded by Pickover's algorithm. Biomorph.png
An example of the sort of biomorphic forms yielded by Pickover's algorithm.

Biomorphs are biological-looking Pickover Stalks. [3] At the end of the 1980s, Pickover developed biological feedback organisms similar to Julia sets and the fractal Mandelbrot set. [4] According to Pickover (1999) in summary, he "described an algorithm that can be used for the creation of diverse and complicated forms resembling invertebrate organisms. The shapes are complicated and difficult to predict before actually experimenting with the mappings." He hoped "these techniques will encourage [others] to explore further and discover new forms, by accident, that are on the edge of science and art". [5]

Pickover developed an algorithm (which uses neither random perturbations nor natural laws) to create very complicated forms resembling invertebrate organisms. The iteration, or recursion, of mathematical transformations is used to generate biological morphologies. He called them "biomorphs." At the same time he coined "biomorph" for these patterns, the famous evolutionary biologist Richard Dawkins used the word to refer to his own set of biological shapes that were arrived at by a very different procedure. More rigorously, Pickover's "biomorphs" encompass the class of organismic morphologies created by small changes to traditional convergence tests in the field of "Julia set" theory. [5]

Pickover's biomorphs show a self-similarity at different scales, a common feature of dynamical systems with feedback. Real systems, such as shorelines and mountain ranges, also show self-similarity over some scales. A 2-dimensional parametric 0L system can “look” like Pickover's biomorphs. [6]

Implementation

Pickover Stalk rendered with an implementation of the given pseudocode. Pickover Stalk.png
Pickover Stalk rendered with an implementation of the given pseudocode.

The below example, written in pseudocode, renders a Mandelbrot set colored using a Pickover Stalk with a transformation vector and a color dividend.

The transformation vector is used to offset the (x, y) position when sampling the point's distance to the horizontal and vertical axis.

The color dividend is a float used to determine how thick the stalk is when it is rendered.

For each pixel (x, y) on the target, do: {  zx = scaled x coordinate of pixel (scaled to lie in the Mandelbrot X scale (-2.5, 1))     zy = scaled y coordinate of pixel (scaled to lie in the Mandelbrot Y scale (-1, 1))  float2 c = (zx, zy) //Offset in the Mandelbrot formulae    float x = zx; //Coordinates to be iterated  float y = zy;    float trapDistance = 1000000; //Keeps track of distance, set to a high value at first.      int iteration = 0;  while (x*x + y*y < 4 && iteration < maxIterations)  {    float2 z = float2(x, y);    z = cmul(z, z); // z^2, cmul is a multiplication function for complex numbers      z += c;         x = z.x;   y = z.y;    float distanceToX = abs(z.x + transformationVector.x); //Checks the distance to the vertical axis   float distanceToY = abs(z.y + transformationVector.y); //Checks the distance to the horizontal axis    smallestDistance = min(distanceToX, distanceToY); // Use only smaller axis distance   trapDistance = min(trapDistance, smallestDistance);    iteration++;  }  return trapDistance * color / dividend;   //Dividend is an external float, the higher it is the thicker the stalk is } 

Related Research Articles

<span class="mw-page-title-main">Fractal</span> Infinitely detailed mathematical structure

In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illustrated in successive magnifications of the Mandelbrot set. This exhibition of similar patterns at increasingly smaller scales is called self-similarity, also known as expanding symmetry or unfolding symmetry; if this replication is exactly the same at every scale, as in the Menger sponge, the shape is called affine self-similar. Fractal geometry lies within the mathematical branch of measure theory.

<span class="mw-page-title-main">Mandelbrot set</span> Fractal named after mathematician Benoit Mandelbrot

The Mandelbrot set is a two-dimensional set with a relatively simple definition that exhibits great complexity, especially as it is magnified. It is popular for its aesthetic appeal and fractal structures. The set is defined in the complex plane as the complex numbers for which the function does not diverge to infinity when iterated starting at , i.e., for which the sequence , , etc., remains bounded in absolute value.

<span class="mw-page-title-main">Self-similarity</span> Whole of an object being mathematically similar to part of itself

In mathematics, a self-similar object is exactly or approximately similar to a part of itself. Many objects in the real world, such as coastlines, are statistically self-similar: parts of them show the same statistical properties at many scales. Self-similarity is a typical property of fractals. Scale invariance is an exact form of self-similarity where at any magnification there is a smaller piece of the object that is similar to the whole. For instance, a side of the Koch snowflake is both symmetrical and scale-invariant; it can be continually magnified 3x without changing shape. The non-trivial similarity evident in fractals is distinguished by their fine structure, or detail on arbitrarily small scales. As a counterexample, whereas any portion of a straight line may resemble the whole, further detail is not revealed.

<span class="mw-page-title-main">2D computer graphics</span> Computer-based generation of digital images

2D computer graphics is the computer-based generation of digital images—mostly from two-dimensional models and by techniques specific to them. It may refer to the branch of computer science that comprises such techniques or to the models themselves.

<span class="mw-page-title-main">Fractal art</span> Form of algorithmic art

Fractal art is a form of algorithmic art created by calculating fractal objects and representing the calculation results as still digital images, animations, and media. Fractal art developed from the mid-1980s onwards. It is a genre of computer art and digital art which are part of new media art. The mathematical beauty of fractals lies at the intersection of generative art and computer art. They combine to produce a type of abstract art.

<span class="mw-page-title-main">Julia set</span> Fractal sets in complex dynamics of mathematics

In the context of complex dynamics, a branch of mathematics, the Julia set and the Fatou set are two complementary sets defined from a function. Informally, the Fatou set of the function consists of values with the property that all nearby values behave similarly under repeated iteration of the function, and the Julia set consists of values such that an arbitrarily small perturbation can cause drastic changes in the sequence of iterated function values. Thus the behavior of the function on the Fatou set is "regular", while on the Julia set its behavior is "chaotic".

<span class="mw-page-title-main">Clifford A. Pickover</span> American inventor and author (b. 1957)

Clifford Alan Pickover is an American author, editor, and columnist in the fields of science, mathematics, science fiction, innovation, and creativity. For many years, he was employed at the IBM Thomas J. Watson Research Center in Yorktown, New York, where he was editor-in-chief of the IBM Journal of Research and Development. He has been granted more than 700 U.S. patents, is an elected Fellow for the Committee for Skeptical Inquiry, and is author of more than 50 books, translated into more than a dozen languages.

<span class="mw-page-title-main">Buddhabrot</span> Probability distribution over the trajectories of points that escape the Mandelbrot fractal

The Buddhabrot is the probability distribution over the trajectories of points that escape the Mandelbrot fractal. Its name reflects its pareidolic resemblance to classical depictions of Gautama Buddha, seated in a meditation pose with a forehead mark (tikka), a traditional oval crown (ushnisha), and ringlet of hair.

The computer graphics pipeline, also known as the rendering pipeline or graphics pipeline, is a framework within computer graphics that outlines the necessary procedures for transforming a three-dimensional (3D) scene into a two-dimensional (2D) representation on a screen. Once a 3D model is generated, the graphics pipeline converts the model into a visually perceivable format on the computer display. Due to the dependence on specific software, hardware configurations, and desired display attributes, a universally applicable graphics pipeline does not exist. Nevertheless, graphics application programming interfaces (APIs), such as Direct3D, OpenGL and Vulkan were developed to standardize common procedures and oversee the graphics pipeline of a given hardware accelerator. These APIs provide an abstraction layer over the underlying hardware, relieving programmers from the need to write code explicitly targeting various graphics hardware accelerators like AMD, Intel, Nvidia, and others.

<span class="mw-page-title-main">Newton fractal</span> Boundary set in the complex plane

The Newton fractal is a boundary set in the complex plane which is characterized by Newton's method applied to a fixed polynomial p(z) ∈ [z] or transcendental function. It is the Julia set of the meromorphic function zzp(z)/p′(z) which is given by Newton's method. When there are no attractive cycles (of order greater than 1), it divides the complex plane into regions Gk, each of which is associated with a root ζk of the polynomial, k = 1, …, deg(p). In this way the Newton fractal is similar to the Mandelbrot set, and like other fractals it exhibits an intricate appearance arising from a simple description. It is relevant to numerical analysis because it shows that (outside the region of quadratic convergence) the Newton method can be very sensitive to its choice of start point.

<span class="mw-page-title-main">Burning Ship fractal</span> Complex plane fractal

The Burning Ship fractal, first described and created by Michael Michelitsch and Otto E. Rössler in 1992, is generated by iterating the function:

<span class="mw-page-title-main">Tricorn (mathematics)</span> Kinda like the other but uhhhh

In mathematics, the tricorn, sometimes called the Mandelbar set, is a fractal defined in a similar way to the Mandelbrot set, but using the mapping instead of used for the Mandelbrot set. It was introduced by W. D. Crowe, R. Hasson, P. J. Rippon, and P. E. D. Strain-Clark. John Milnor found tricorn-like sets as a prototypical configuration in the parameter space of real cubic polynomials, and in various other families of rational maps.

<span class="mw-page-title-main">Douady rabbit</span> Fractal related to the mandelbrot set

A Douady rabbit is a fractal derived from the Julia set of the function , when parameter is near the center of one of the period three bulbs of the Mandelbrot set for a complex quadratic map.

<span class="mw-page-title-main">Multibrot set</span> Construct in mathematics

In mathematics, a Multibrot set is the set of values in the complex plane whose absolute value remains below some finite value throughout iterations by a member of the general monic univariate polynomial family of recursions. The name is a portmanteau of multiple and Mandelbrot set. The same can be applied to the Julia set, this being called Multijulia set.

<span class="mw-page-title-main">Fractal-generating software</span>

Fractal-generating software is any type of graphics software that generates images of fractals. There are many fractal generating programs available, both free and commercial. Mobile apps are available to play or tinker with fractals. Some programmers create fractal software for themselves because of the novelty and because of the challenge in understanding the related mathematics. The generation of fractals has led to some very large problems for pure mathematics.

<span class="mw-page-title-main">Mandelbulb</span> Three-dimensional fractal

The Mandelbulb is a three-dimensional fractal, constructed for the first time in 1997 by Jules Ruis and in 2009 further developed by Daniel White and Paul Nylander using spherical coordinates.

<span class="mw-page-title-main">Barnsley fern</span> Fractal which resembles a plant

The Barnsley fern is a fractal named after the British mathematician Michael Barnsley who first described it in his book Fractals Everywhere. He made it to resemble the black spleenwort, Asplenium adiantum-nigrum.

<span class="mw-page-title-main">Orbit trap</span> Method of colouring fractal images

In mathematics, an orbit trap is a method of colouring fractal images based upon how close an iterative function, used to create the fractal, approaches a geometric shape, called a "trap". Typical traps are points, lines, circles, flower shapes and even raster images. Orbit traps are typically used to colour two dimensional fractals representing the complex plane.

<span class="mw-page-title-main">Mandelbox</span> Fractal with a boxlike shape

In mathematics, the mandelbox is a fractal with a boxlike shape found by Tom Lowe in 2010. It is defined in a similar way to the famous Mandelbrot set as the values of a parameter such that the origin does not escape to infinity under iteration of certain geometrical transformations. The mandelbox is defined as a map of continuous Julia sets, but, unlike the Mandelbrot set, can be defined in any number of dimensions. It is typically drawn in three dimensions for illustrative purposes.

<span class="mw-page-title-main">Plotting algorithms for the Mandelbrot set</span> Algorithms and methods of plotting the Mandelbrot set on a computing device

There are many programs and algorithms used to plot the Mandelbrot set and other fractals, some of which are described in fractal-generating software. These programs use a variety of algorithms to determine the color of individual pixels efficiently.

References

  1. Peter J. Bentley and David W. Corne (2001). Creative Evolutionary Systems. Morgan Kaufmann. p. 354.
  2. Linas Vepstas (1997). "Interior Sketchbook Diary". Retrieved 8 July 2008.
  3. Paul Nylander. Mandelbrot Set Biomorph. feb 2005. Retrieved 8 July 2008.
  4. Edward Rietman (1994). Genesis Redux: Experiments Creating Artificial Life. Windcrest/McGraw-Hill. p. 154.
  5. 1 2 Clifford A. Pickover (1991) "Accident, Evolution, and Art". YLEM Newsletter number 12 volume 19 Nov/Dec. 1999.
  6. Alfonso Ortega, Marina de la Cruz, and Manuel Alfonseca (2002). "Parametric 2-dimensional L systems and recursive fractal images: Mandelbrot set, Julia sets and biomorphs". In: Computers & Graphics Volume 26, Issue 1, February 2002, Pages 143-149.

Further reading