Pinout

Last updated
A pinout diagram of a very common 555 timer integrated circuit showing its eight pins (numbered 1-8) and their corresponding functions ("ground", "trigger", "output", etc.) 555 Pinout.svg
A pinout diagram of a very common 555 timer integrated circuit showing its eight pins (numbered 1-8) and their corresponding functions ("ground", "trigger", "output", etc.)

In electronics, a pinout (sometimes written "pin-out") is a cross-reference between the contacts, or pins, of an electrical connector or electronic component, and their functions. "Pinout" now supersedes the term "basing diagram" which was the standard terminology used by the manufacturers of vacuum tubes and the RMA. The RMA started its standardization in 1934, collecting and correlating tube data for registration at what was to become the EIA. The EIA (Electronic Industries Alliance) now has many sectors reporting to it and sets what is known as EIA standards where all registered pinouts and registered jacks can be found.

Contents

Purpose

The functions of contacts in electrical connectors, be they power- or signaling-related, must be specified for connectors to be interchangeable. Each connector contact must mate with the contact on the other connector with the same function. If contacts of disparate functions are allowed to make contact, the connection may fail, and damage may result. Therefore, pinouts are a vital reference when building and testing connectors, cables, and adapters.

Suppose one has specified wires within a cable (for instance, the colored Ethernet cable wires in ANSI/TIA-568 T568A). In that case, the order in which different color wires are attached to pins of an electrical connector defines the wiring scheme. In any multi-pin connector, there are multiple ways to map wires to pins, so different configurations may be created that superficially look identical but function differently. Pinouts define these configurations. Many connectors have multiple standard pinouts in use for different manufacturers or applications. [1]

Terminology

While one usage of the word pin is to refer to electrical contacts of, specifically, the male gender, its usage in pinout does not imply gender: the contact-to-function cross-reference for a connector that has only female socket contacts is still called a pinout.

Representation

The pinout can typically be shown as a table or diagram. However, it is necessary to clarify how to view the diagram, stating if it shows the backside of the connector (where wires are attached) or the "mating face" of the connector. Published pinouts, which are particularly important when different manufacturers want to interconnect their products using open standards, are typically provided by the connector or equipment manufacturer. However, some pinouts are provided by 3rd parties since the manufacturer does not well document some connectors.

While repairing electronic devices, an electronics technician uses electronic test equipment to "pin out" each component on a PCB. The technician probes each pin of the component in turn, comparing the expected signal on each pin to the actual signal on that pin.

Example pinouts

USB pinout

Viewed from the front (outside) of Female Type A USB receptacle:

USB Type-A Numbered diagram.svg
  1. +5V (Red)
  2. −Data (White)
  3. +Data (Green)
  4. GND (Black)

PS/2 pinout

PS/2 connector pinout MiniDIN-6 Connector Pinout.svg
PS/2 connector pinout
Pin numberNamePurpose
1DATAData
2Not used
3GND Ground
4Vcc+5V Common-collector voltage
5CLK Clock signal
6Not used

4017 decade counter

4017 pinout 4017 Pinout.svg
4017 pinout
Pin numberNamePurpose
16The 6th sequential output
22The 2nd sequential output
31The 1st sequential output
43The 3rd sequential output
57The 7th sequential output
68The 8th sequential output
74The 4th sequential output
80 V, VDDThe connection to the 0 V rail
99The 9th sequential output
105The 5th sequential output
1110The 10th sequential output
12COCarry out output - outputs high on counts 0 to 4, outputs low on counts 5 to 9 (thus a transition from low to high occurs when counting from 9 back to 0)
13ENLatch enable - latches on the current output when high (i.e., the chip counts when EN is low)
14CLKClock in
15RSTReset - sets output 1 high and outputs 2 through 10 low, when taken high
16+9 V, VCCThe connection to the +VCC rail (voltage between +3 V and +15 V)

LM741 operational amplifier

LM741 Pinout Round.svg

See also

Related Research Articles

<span class="mw-page-title-main">RS-232</span> Standard for serial communication

In telecommunications, RS-232 or Recommended Standard 232 is a standard originally introduced in 1960 for serial communication transmission of data. It formally defines signals connecting between a DTE such as a computer terminal, and a DCE, such as a modem. The standard defines the electrical characteristics and timing of signals, the meaning of signals, and the physical size and pinout of connectors. The current version of the standard is TIA-232-F Interface Between Data Terminal Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange, issued in 1997. The RS-232 standard had been commonly used in computer serial ports and is still widely used in industrial communication devices.

<span class="mw-page-title-main">Ethernet over twisted pair</span> Ethernet physical layers using twisted-pair cables

Ethernet over twisted-pair technologies use twisted-pair cables for the physical layer of an Ethernet computer network. They are a subset of all Ethernet physical layers.

<span class="mw-page-title-main">Category 5 cable</span> Unshielded twisted pair communications cable

Category 5 cable (Cat 5) is a twisted pair cable for computer networks. Since 2001, the variant commonly in use is the Category 5e specification (Cat 5e). The cable standard provides performance of up to 100 MHz and is suitable for most varieties of Ethernet over twisted pair up to 2.5GBASE-T but more commonly runs at 1000BASE-T speeds. Cat 5 is also used to carry other signals such as telephone and video.

<span class="mw-page-title-main">SCART</span> 21-pin connector for audio-visual equipment

SCART is a French-originated standard and associated 21-pin connector for connecting audio-visual (AV) equipment. The name SCART comes from Syndicat des Constructeurs d'Appareils Radiorécepteurs et Téléviseurs, "Radio and Television Receiver Manufacturers' Association", the French organisation that created the connector in the mid-1970s. The related European standard EN 50049 has then been refined and published in 1978 by CENELEC, calling it péritelevision, but it is commonly called by the abbreviation péritel in French.

<span class="mw-page-title-main">Electrical connector</span> Device used to join electrical conductors

Components of an electrical circuit are electrically connected if an electric current can run between them through an electrical conductor. An electrical connector is an electromechanical device used to create an electrical connection between parts of an electrical circuit, or between different electrical circuits, thereby joining them into a larger circuit. Most electrical connectors have a gender – i.e. the male component, called a plug, connects to the female component, or socket. The connection may be removable, require a tool for assembly and removal, or serve as a permanent electrical joint between two points. An adapter can be used to join dissimilar connectors.

<span class="mw-page-title-main">DMX512</span> Digital communication network standard for controlling stage lighting and effects

DMX512 is a standard for digital communication networks that are commonly used to control lighting and effects. It was originally intended as a standardized method for controlling stage lighting dimmers, which, prior to DMX512, had employed various incompatible proprietary protocols. It quickly became the primary method for linking controllers to dimmers and special effects devices such as fog machines and intelligent lights.

<span class="mw-page-title-main">XLR connector</span> Style of electrical connector found primarily in professional audio and lighting

The XLR connector is a type of electrical connector primarily used in professional audio, video, and stage lighting equipment. XLR connectors are cylindrical in design, with three to seven connector pins, and are often employed for analog balanced audio interconnections, AES3 digital audio, portable intercom, DMX512 lighting control, and for low-voltage power supply. XLR connectors are included to the international standard for dimensions, IEC 61076-2-103. The XLR connector is superficially similar to the smaller DIN connector, with which it is physically incompatible.

<span class="mw-page-title-main">Registered jack</span> Telecommunication network interface

A registered jack (RJ) is a standardized telecommunication network interface for connecting voice and data equipment to a service provided by a local exchange carrier or long distance carrier. Registration interfaces were first defined in the Universal Service Ordering Code (USOC) system of the Bell System in the United States for complying with the registration program for customer-supplied telephone equipment mandated by the Federal Communications Commission (FCC) in the 1970s. They were subsequently codified in title 47 of the Code of Federal Regulations Part 68. Registered jack connections began to see use after their invention in 1973 by Bell Labs. The specification includes physical construction, wiring, and signal semantics. Accordingly, registered jacks are primarily named by the letters RJ, followed by two digits that express the type. Additional letter suffixes indicate minor variations. For example, RJ11, RJ14, and RJ25 are the most commonly used interfaces for telephone connections for one-, two-, and three-line service, respectively. Although these standards are legal definitions in the United States, some interfaces are used worldwide.

<span class="mw-page-title-main">RS-422</span> Standard for serial communication

RS-422, also known as TIA/EIA-422, is a technical standard originated by the Electronic Industries Alliance that specifies electrical characteristics of a digital signaling circuit. It was meant to be the foundation of a suite of standards that would replace the older RS-232C standard with standards that offered much higher speed, better immunity from noise, and longer cable lengths. RS-422 systems can transmit data at rates as high as 10 Mbit/s, or may be sent on cables as long as 1,200 meters (3,900 ft) at lower rates. It is closely related to RS-423, which uses the same signaling systems but on a different wiring arrangement.

<span class="mw-page-title-main">D-subminiature</span> Type of electrical connector

The D-subminiature or D-sub is a common type of electrical connector. They are named for their characteristic D-shaped metal shield. When they were introduced, D-subs were among the smallest connectors used on computer systems.

<span class="mw-page-title-main">Crossover cable</span> Cable with intentionally crossed wiring

A crossover cable connects two devices of the same type, for example DTE-DTE or DCE-DCE, usually connected asymmetrically (DTE-DCE), by a modified cable called a crosslink. Such a distinction between devices was introduced by IBM.

RS-485, also known as TIA-485(-A) or EIA-485, is a standard defining the electrical characteristics of drivers and receivers for use in serial communications systems. Electrical signaling is balanced, and multipoint systems are supported. The standard is jointly published by the Telecommunications Industry Association and Electronic Industries Alliance (TIA/EIA). Digital communications networks implementing the standard can be used effectively over long distances and in electrically noisy environments. Multiple receivers may be connected to such a network in a linear, multidrop bus. These characteristics make RS-485 useful in industrial control systems and similar applications.

<span class="mw-page-title-main">Medium-dependent interface</span> Interface between a network device and the data link it communicates over

A medium dependent interface (MDI) describes the interface in a computer network from a physical layer implementation to the physical medium used to carry the transmission. Ethernet over twisted pair also defines a medium dependent interface crossover (MDI-X) interface. Auto MDI-X ports on newer network interfaces detect if the connection would require a crossover, and automatically chooses the MDI or MDI-X configuration to properly match the other end of the link.

<span class="mw-page-title-main">Patch cable</span>

A patch cable, patch cord or patch lead is an electrical or optical cable used to connect one electronic or optical device to another for signal routing. Devices of different types are connected with patch cords.

An Ethernet crossover cable is a crossover cable for Ethernet used to connect computing devices together directly. It is most often used to connect two devices of the same type, e.g. two computers or two switches to each other. By contrast, straight through patch cables are used to connect devices of different types, such as a computer to a network switch.

<span class="mw-page-title-main">Modular connector</span> Electrical connector commonly used in telephone and computer networks

A modular connector is a type of electrical connector for cords and cables of electronic devices and appliances, such as in computer networking, telecommunication equipment, and audio headsets.

RS-423, also known as TIA/EIA-423, is a technical standard originated by the Electronic Industries Alliance that specifies electrical characteristics of a digital signaling circuit. Although it was originally intended as a successor to RS-232C offering greater cable lengths, it is not widely used.

Several types of connectors for car audio systems are used.

ANSI/TIA-568 is a technical standard for commercial building cabling for telecommunications products and services. The title of the standard is Commercial Building Telecommunications Cabling Standard and is published by the Telecommunications Industry Association (TIA), a body accredited by the American National Standards Institute (ANSI).

References

  1. "Handbook of hardware schemes, cables layouts and connectors". pinouts.ru. Retrieved 2016-04-25.