QDPR

Last updated
QDPR
Protein QDPR PDB 1dhr.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases QDPR , DHPR, PKU2, SDR33C1, quinoid dihydropteridine reductase, HDHPR
External IDs OMIM: 612676 MGI: 97836 HomoloGene: 271 GeneCards: QDPR
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000320
NM_001306140

NM_024236

RefSeq (protein)

NP_000311
NP_001293069

NP_077198

Location (UCSC) Chr 4: 17.46 – 17.51 Mb Chr 5: 45.43 – 45.45 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

QDPR (quinoid dihydropteridine reductase) is a human gene that produces the enzyme quinoid dihydropteridine reductase. This enzyme is part of the pathway that recycles a substance called tetrahydrobiopterin, also known as BH4. Tetrahydrobiopterin works with an enzyme called phenylalanine hydroxylase to process a substance called phenylalanine. Phenylalanine is an amino acid (a building block of proteins) that is obtained through the diet; it is found in all proteins and in some artificial sweeteners. When tetrahydrobiopterin interacts with phenylalanine hydroxylase, tetrahydrobiopterin is altered and must be recycled to a usable form. The regeneration of this substance is critical for the proper processing of several other amino acids in the body. Tetrahydrobiopterin also helps produce certain chemicals in the brain called neurotransmitters, which transmit signals between nerve cells.

Contents

The QDPR gene is located on the short (p) arm of chromosome 4 at position 15.31, from base pair 17,164,291 to base pair 17,189,981.

In melanocytic cells QDPR gene expression may be regulated by MITF. [5]

Mutations in the QDPR gene are a common cause of tetrahydrobiopterin deficiency. More than 30 disorder-causing mutations in this gene have been identified, including aberrant splicing, amino acid substitutions, insertions, or premature terminations. These mutations completely, or almost completely, inactivate quinoid dihydropteridine reductase, which prevents the normal recycling of tetrahydrobiopterin. In the absence of usable tetrahydrobiopterin, the body cannot process phenylalanine correctly. As a result, phenylalanine from the diet builds up in the bloodstream and other tissues and can lead to brain damage. Neurotransmitters in the brain are also affected, resulting in delayed development, seizures, movement disorders, and other symptoms.

In addition, a reduction in the activity of quinoid dihydropteridine reductase may cause calcium to build up abnormally in certain parts of the brain, resulting in damage to nerve cells.

Related Research Articles

Phenylalanine hydroxylase

Phenylalanine hydroxylase (PAH) (EC 1.14.16.1) is an enzyme that catalyzes the hydroxylation of the aromatic side-chain of phenylalanine to generate tyrosine. PAH is one of three members of the biopterin-dependent aromatic amino acid hydroxylases, a class of monooxygenase that uses tetrahydrobiopterin (BH4, a pteridine cofactor) and a non-heme iron for catalysis. During the reaction, molecular oxygen is heterolytically cleaved with sequential incorporation of one oxygen atom into BH4 and phenylalanine substrate. In humans, mutations in its encoding gene, PAH, can lead to the metabolic disorder phenylketonuria.

Tetrahydrobiopterin

Tetrahydrobiopterin (BH4, THB), also known as sapropterin (INN), is a cofactor of the three aromatic amino acid hydroxylase enzymes, used in the degradation of amino acid phenylalanine and in the biosynthesis of the neurotransmitters serotonin (5-hydroxytryptamine, 5-HT), melatonin, dopamine, norepinephrine (noradrenaline), epinephrine (adrenaline), and is a cofactor for the production of nitric oxide (NO) by the nitric oxide syntheses. Chemically, its structure is that of a (dihydropteridine reductase) reduced pteridine derivative (Quinonoid dihydrobiopterin).

Tetrahydrobiopterin deficiency Medical condition

Tetrahydrobiopterin deficiency (THBD, BH4D) is a rare metabolic disorder that increases the blood levels of phenylalanine. Phenylalanine is an amino acid obtained normally through the diet, but can be harmful if excess levels build up, causing intellectual disability and other serious health problems. In healthy individuals, it is metabolised (hydroxylated) into tyrosine, another amino acid, by phenylalanine hydroxylase. However, this enzyme requires tetrahydrobiopterin as a cofactor and thus its deficiency slows phenylalanine metabolism.

Tyrosine hydroxylase Mammalian protein found in Homo sapiens

Tyrosine hydroxylase or tyrosine 3-monooxygenase is the enzyme responsible for catalyzing the conversion of the amino acid L-tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA). It does so using molecular oxygen (O2), as well as iron (Fe2+) and tetrahydrobiopterin as cofactors. L-DOPA is a precursor for dopamine, which, in turn, is a precursor for the important neurotransmitters norepinephrine (noradrenaline) and epinephrine (adrenaline). Tyrosine hydroxylase catalyzes the rate limiting step in this synthesis of catecholamines. In humans, tyrosine hydroxylase is encoded by the TH gene, and the enzyme is present in the central nervous system (CNS), peripheral sympathetic neurons and the adrenal medulla. Tyrosine hydroxylase, phenylalanine hydroxylase and tryptophan hydroxylase together make up the family of aromatic amino acid hydroxylases (AAAHs).

Arylsulfatase A

Arylsulfatase A is an enzyme that breaks down sulfatides, namely cerebroside 3-sulfate into cerebroside and sulfate. In humans, arylsulfatase A is encoded by the ARSA gene.

Steroid 11β-hydroxylase

Steroid 11β-hydroxylase, also known as steroid 11β-monooxygenase, is a steroid hydroxylase found in the zona glomerulosa and zona fasciculata of the adrenal cortex. Named officially the cytochrome P450 11B1, mitochondrial, it is a protein that in humans is encoded by the CYP11B1 gene. The enzyme is involved in the biosynthesis of adrenal corticosteroids by catalyzing the addition of hydroxyl groups during oxidation reactions.

Galactosamine-6 sulfatase

N-acetylgalactosamine-6-sulfatase is an enzyme that, in humans, is encoded by the GALNS gene.

Cartilage associated protein

Cartilage associated protein is a protein that in humans is encoded by the CRTAP gene.

Sepiapterin reductase

Sepiapterin reductase is an enzyme that in humans is encoded by the SPR gene.

6,7-dihydropteridine reductase

In enzymology, 6,7-dihydropteridine reductase (EC 1.5.1.34, also Dihydrobiopterin reductase) is an enzyme that catalyzes the chemical reaction

PTS (gene)

6-pyruvoyltetrahydropterin synthase, also known as PTS, is a human gene which facilitates folate biosynthesis.

AGXT

Serine—pyruvate aminotransferase is an enzyme that in humans is encoded by the AGXT gene.

PHKA2

Phosphorylase b kinase regulatory subunit alpha, liver isoform is an enzyme that in humans is encoded by the PHKA2 gene.

GCHFR

GTP cyclohydrolase 1 feedback regulatory protein is an enzyme that in humans is encoded by the GCHFR gene.

HSD17B7

3-keto-steroid reductase is an enzyme that in humans is encoded by the HSD17B7 gene.

PHKB

Phosphorylase b kinase regulatory subunit beta is an enzyme that in humans is encoded by the PHKB gene.

GRHPR

Glyoxylate reductase/hydroxypyruvate reductase is an enzyme that in humans is encoded by the GRHPR gene.

COQ2

Para-hydroxybenzoate—polyprenyltransferase, mitochondrial is an enzyme that in humans is encoded by the COQ2 gene.

CYP2R1

CYP2R1 is cytochrome P450 2R1, an enzyme which is the principal vitamin D 25-hydroxylase. In humans it is encoded by the CYP2R1 gene located on chromosome 11p15.2. It is expressed in the endoplasmic reticulum in liver, where it performs the first step in the activation of vitamin D by catalyzing the formation of 25-hydroxyvitamin D.

Dihydropteridine reductase deficiency (DHPRD) is a genetic disorder affecting the tetrahydrobiopterin (BH4) synthesis pathway, inherited in the autosomal recessive pattern. It is one of the six known disorders causing tetrahydrobiopterin deficiency, and occurs in patients with mutations of the QDPR gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000151552 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000015806 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Hoek KS, Schlegel NC, Eichhoff OM, et al. (2008). "Novel MITF targets identified using a two-step DNA microarray strategy". Pigment Cell Melanoma Res. 21 (6): 665–76. doi: 10.1111/j.1755-148X.2008.00505.x . PMID   19067971. S2CID   24698373.

Sources

Further reading