Quadratrix of Hippias

Last updated
Quadratrix (red); snapshot of E and F having completed 60% of their motions Quadratrix no anim.svg
Quadratrix (red); snapshot of E and F having completed 60% of their motions

The quadratrix or trisectrix of Hippias (also quadratrix of Dinostratus) is a curve which is created by a uniform motion. It is one of the oldest examples for a kinematic curve (a curve created through motion). Its discovery is attributed to the Greek sophist Hippias of Elis, who used it around 420 BC in an attempt to solve the angle trisection problem (hence trisectrix). Later around 350 BC Dinostratus used it in an attempt to solve the problem of squaring the circle (hence quadratrix).

Contents

Definition

Quadratrix as a plane curve for side length
a
=
1
{\displaystyle a=1} Quadratrixkurve.svg
Quadratrix as a plane curve for side length
Quadratrix as a function for
a
=
1
{\displaystyle a=1} Quadratrixfunktion.svg
Quadratrix as a function for

Consider a square , and an inscribed quarter circle arc centered at with radius equal to the side of the square. Let be a point that travels with a constant angular velocity along the arc from to , and let be a point that travels simultaneously with a constant velocity from to along line segment , so that and start at the same time at and arrive at the same time at and . Then the quadratrix is defined as the locus of the intersection of line segment with the parallel line to through . [1] [2]

If one places such a square with side length in a (Cartesian) coordinate system with the side on the -axis and with vertex at the origin, then the quadratix is described by a planar curve with

This description can also be used to give an analytical rather than a geometric definition of the quadratrix and to extend it beyond the interval. It does however remain undefined at the singularities of except for the case of where the singularity is removable due to and hence yields a continuous planar curve on the interval . [3] [4]

To describe the quadratrix as simple function rather than planar curve, it is advantageous to swap the -axis and the -axis, that is to place the side on the -axis rather than on the -axis. Then the quadratrix forms the graph of the function [5] [6]

Angle trisection

Quadratrix compass Mechanical Quadratrix or Quadratrixzirkel.svg
Quadratrix compass
Angle trisection Angle trisection quadratix hippias.svg
Angle trisection

The trisection of an arbitrary angle using only ruler and compasses is impossible. However, if the quadratrix is allowed as an additional tool, it is possible to divide an arbitrary angle into equal segments and hence a trisection () becomes possible. In practical terms the quadratrix can be drawn with the help of a template or a quadratrix compass (see drawing). [1] [2]

Since, by the definition of the quadratrix, the traversed angle is proportional to the traversed segment of the associated squares' side dividing that segment on the side into equal parts yields a partition of the associated angle as well. Dividing the line segment into equal parts with ruler and compass is possible due to the intercept theorem.

For a given angle (at most 90°) construct a square over its leg . The other leg of the angle intersects the quadratrix of the square in a point and the parallel line to the leg through intersects the side of the square in . Now the segment corresponds to the angle and due to the definition of the quadratrix any division of the segment into equal segments yields a corresponding division of the angle into equal angles. To divide the segment into equal segments, draw any ray starting at with equal segments (of arbitrary length) on it. Connect the endpoint of the last segment to and draw lines parallel to through all the endpoints of the remaining segments on . These parallel lines divide the segment into equal segments. Now draw parallel lines to through the endpoints of those segments on , intersecting the trisectrix. Connecting their points of intersection to yields a partition of angle into equal angles. [5]

Since not all points of the trisectrix can be constructed with circle and compass alone, it is really required as an additional tool next to compass and circle. However it is possible to construct a dense subset of the trisectrix by circle and compass, so while one cannot assure an exact division of an angle into parts without a given trisectrix, one can construct an arbitrarily close approximation by circle and compass alone. [2] [3]

Squaring of the circle

Squaring of a quarter circle with radius 1 Circle quadrature quadratix hippias2.svg
Squaring of a quarter circle with radius 1

Squaring the circle with ruler and compass alone is impossible. However, if one allows the quadratrix of Hippias as an additional construction tool, the squaring of the circle becomes possible due to Dinostratus' theorem. It lets one turn a quarter circle into square of the same area, hence a square with twice the side length has the same area as the full circle.

According to Dinostratus' theorem the quadratrix divides one of the sides of the associated square in a ratio of . [1] For a given quarter circle with radius r one constructs the associated square ABCD with side length r. The quadratrix intersect the side AB in J with . Now one constructs a line segment JK of length r being perpendicular to AB. Then the line through A and K intersects the extension of the side BC in L and from the intercept theorem follows . Extending AB to the right by a new line segment yields the rectangle BLNO with sides BL and BO the area of which matches the area of the quarter circle. This rectangle can be transformed into a square of the same area with the help of Euclid's geometric mean theorem. One extends the side ON by a line segment and draws a half circle to right of NQ, which has NQ as its diameter. The extension of BO meets the half circle in R and due to Thales' theorem the line segment OR is the altitude of the right-angled triangle QNR. Hence the geometric mean theorem can be applied, which means that OR forms the side of a square OUSR with the same area as the rectangle BLNO and hence as the quarter circle. [7]

Note that the point J, where the quadratrix meets the side AB of the associated square, is one of the points of the quadratrix that cannot be constructed with ruler and compass alone and not even with the help of the quadratrix compass based on the original geometric definition (see drawing). This is due to the fact that the two uniformly moving lines coincide and hence there exists no unique intersection point. However relying on the generalized definition of the quadratrix as a function or planar curve allows for J being a point on the quadratrix. [8] [9]

Historical sources

The quadratrix is mentioned in the works of Proclus (412–485), Pappus of Alexandria (3rd and 4th centuries) and Iamblichus (c. 240  c. 325). Proclus names Hippias as the inventor of a curve called quadratrix and describes somewhere else how Hippias has applied the curve on the trisection problem. Pappus only mentions how a curve named quadratrix was used by Dinostratus, Nicomedes and others to square the circle. He neither mentions Hippias nor attributes the invention of the quadratrix to a particular person. Iamblichus just writes in a single line, that a curve called a quadratrix was used by Nicomedes to square the circle. [10] [11] [12]

Although based on Proclus' name for the curve it is conceivable that Hippias himself used it for squaring the circle or some other curvilinear figure, most historians of mathematics assume that Hippias invented the curve, but used it only for the trisection of angles. Its use for squaring the circle only occurred decades later and was due to mathematicians like Dinostratus and Nicomedes. This interpretation of the historical sources goes back to the German mathematician and historian Moritz Cantor. [11] [12]

See also

Related Research Articles

<span class="mw-page-title-main">Circle</span> Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius.

<span class="mw-page-title-main">Constructible number</span> Number constructible via compass and straightedge

In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length can be constructed with compass and straightedge in a finite number of steps. Equivalently, is constructible if and only if there is a closed-form expression for using only integers and the operations for addition, subtraction, multiplication, division, and square roots.

<span class="mw-page-title-main">Quadrilateral</span> Polygon with four sides and four corners

In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons. Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices , , and is sometimes denoted as .

<span class="mw-page-title-main">Similarity (geometry)</span> Property of objects which are scaled or mirrored versions of each other

In Euclidean geometry, two objects are similar if they have the same shape, or if one has the same shape as the mirror image of the other. More precisely, one can be obtained from the other by uniformly scaling, possibly with additional translation, rotation and reflection. This means that either object can be rescaled, repositioned, and reflected, so as to coincide precisely with the other object. If two objects are similar, each is congruent to the result of a particular uniform scaling of the other.

<span class="mw-page-title-main">Perpendicular</span> Relationship between two lines that meet at a right angle (90 degrees)

In geometry, two geometric objects are perpendicular if their intersection forms right angles at the point of intersection called a foot. The condition of perpendicularity may be represented graphically using the perpendicular symbol, ⟂. Perpendicular intersections can happen between two lines, between a line and a plane, and between two planes.

<span class="mw-page-title-main">Angle trisection</span> Construction of an angle equal to one third a given angle

Angle trisection is a classical problem of straightedge and compass construction of ancient Greek mathematics. It concerns construction of an angle equal to one third of a given arbitrary angle, using only two tools: an unmarked straightedge and a compass.

<span class="mw-page-title-main">Bisection</span> Division of something into two equal or congruent parts

In geometry, bisection is the division of something into two equal or congruent parts. Usually it involves a bisecting line, also called a bisector. The most often considered types of bisectors are the segment bisector, a line that passes through the midpoint of a given segment, and the angle bisector, a line that passes through the apex of an angle . In three-dimensional space, bisection is usually done by a bisecting plane, also called the bisector.

<span class="mw-page-title-main">Incircle and excircles</span> Circles tangent to all three sides of a triangle

In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches the three sides. The center of the incircle is a triangle center called the triangle's incenter.

<span class="mw-page-title-main">Ptolemy's theorem</span> Relates the 4 sides and 2 diagonals of a quadrilateral with vertices on a common circle

In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral. The theorem is named after the Greek astronomer and mathematician Ptolemy. Ptolemy used the theorem as an aid to creating his table of chords, a trigonometric table that he applied to astronomy.

In geometry, a quadratrix is a curve having ordinates which are a measure of the area of another curve. The two most famous curves of this class are those of Dinostratus and E. W. Tschirnhaus, which are both related to the circle.

In geometry, a trisectrix is a curve which can be used to trisect an arbitrary angle with ruler and compass and this curve as an additional tool. Such a method falls outside those allowed by compass and straightedge constructions, so they do not contradict the well known theorem which states that an arbitrary angle cannot be trisected with that type of construction. There is a variety of such curves and the methods used to construct an angle trisector differ according to the curve. Examples include:

Dinostratus was a Greek mathematician and geometer, and the brother of Menaechmus. He is known for using the quadratrix to solve the problem of squaring the circle.

<span class="mw-page-title-main">Steiner inellipse</span> Unique ellipse tangent to all 3 midpoints of a given triangles sides

In geometry, the Steiner inellipse, midpoint inellipse, or midpoint ellipse of a triangle is the unique ellipse inscribed in the triangle and tangent to the sides at their midpoints. It is an example of an inellipse. By comparison the inscribed circle and Mandart inellipse of a triangle are other inconics that are tangent to the sides, but not at the midpoints unless the triangle is equilateral. The Steiner inellipse is attributed by Dörrie to Jakob Steiner, and a proof of its uniqueness is given by Dan Kalman.

<span class="mw-page-title-main">Limaçon trisectrix</span> Quartic plane curve

In geometry, a limaçon trisectrix is the name for the quartic plane curve that is a trisectrix that is specified as a limaçon. The shape of the limaçon trisectrix can be specified by other curves particularly as a rose, conchoid or epitrochoid. The curve is one among a number of plane curve trisectrixes that includes the Conchoid of Nicomedes, the Cycloid of Ceva, Quadratrix of Hippias, Trisectrix of Maclaurin, and Tschirnhausen cubic. The limaçon trisectrix a special case of a sectrix of Maclaurin.

<span class="mw-page-title-main">Bicentric quadrilateral</span> Convex, 4-sided shape with an incircle and a circumcircle

In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. The radii and centers of these circles are called inradius and circumradius, and incenter and circumcenter respectively. From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chord-tangent quadrilateral and inscribed and circumscribed quadrilateral. It has also rarely been called a double circle quadrilateral and double scribed quadrilateral.

<span class="mw-page-title-main">Orthodiagonal quadrilateral</span>

In Euclidean geometry, an orthodiagonal quadrilateral is a quadrilateral in which the diagonals cross at right angles. In other words, it is a four-sided figure in which the line segments between non-adjacent vertices are orthogonal (perpendicular) to each other.

<span class="mw-page-title-main">Dinostratus' theorem</span>

In geometry, Dinostratus' theorem describes a property of Hippias' trisectrix, that allows for the squaring the circle if the trisectrix can be used in addition to straightedge and compass. The theorem is named after the Greek mathematician Dinostratus who proved it around 350 BC when he attempted to square the circle himself.

<span class="mw-page-title-main">Tangential trapezoid</span> Trapezoid whose sides are all tangent to the same circle

In Euclidean geometry, a tangential trapezoid, also called a circumscribed trapezoid, is a trapezoid whose four sides are all tangent to a circle within the trapezoid: the incircle or inscribed circle. It is the special case of a tangential quadrilateral in which at least one pair of opposite sides are parallel. As for other trapezoids, the parallel sides are called the bases and the other two sides the legs. The legs can be equal, but they don't have to be.

<span class="mw-page-title-main">Newton–Gauss line</span> Line joining midpoints of a complete quadrilaterals 3 diagonals

In geometry, the Newton–Gauss line is the line joining the midpoints of the three diagonals of a complete quadrilateral.

References

  1. 1 2 3 Hischer, Horst (2000), "Klassische Probleme der Antike – Beispiele zur "Historischen Verankerung"" (PDF), in Blankenagel, Jürgen; Spiegel, Wolfgang (eds.), Mathematikdidaktik aus Begeisterung für die Mathematik – Festschrift für Harald Scheid, Stuttgart/Düsseldorf/Leipzig: Klett, pp. 97–118
  2. 1 2 3 Henn, Hans-Wolfgang (2003), "Die Quadratur des Kreises", Elementare Geometrie und Algebra, Verlag Vieweg+Teubner, pp. 45–48
  3. 1 2 Jahnke, Hans Niels (2003), A History of Analysis, American Mathematical Society, pp. 30–31, ISBN   0821826239 ; excerpt , p. 30, at Google Books
  4. Weisstein, Eric W., "Quadratrix of Hippias", MathWorld
  5. 1 2 Dudley, Underwood (1994), The Trisectors, Cambridge University Press, pp. 6–8, ISBN   0883855143 ; excerpt , p. 6, at Google Books
  6. O'Connor, John J.; Robertson, Edmund F., "Quadratrix of Hippias", MacTutor History of Mathematics Archive , University of St Andrews, p. cur
  7. Holme, Audun (2010), Geometry: Our Cultural Heritage, Springer, pp. 114–116, ISBN   9783642144400
  8. Delahaye, Jean-Paul (1999), – Die Story, Springer, p. 71, ISBN   3764360569
  9. O'Connor, John J.; Robertson, Edmund F., "Dinostratus", MacTutor History of Mathematics Archive , University of St Andrews, p. bio
  10. van der Waerden, Bartel Leendert (1961), Science Awakening, Oxford University Press, p. 146
  11. 1 2 Gow, James (2010), A Short History of Greek Mathematics, Cambridge University Press, pp. 162–164, ISBN   9781108009034
  12. 1 2 Heath, Thomas Little (1921), A History of Greek Mathematics, Volume 1: From Thales to Euclid, Clarendon Press, pp. 182, 225–230

Further reading