R-parity

Last updated

R-parity is a concept in particle physics. In the Minimal Supersymmetric Standard Model, baryon number and lepton number are no longer conserved by all of the renormalizable couplings in the theory. Since baryon number and lepton number conservation have been tested very precisely, these couplings need to be very small in order not to be in conflict with experimental data. R-parity is a symmetry acting on the Minimal Supersymmetric Standard Model (MSSM) fields that forbids these couplings and can be defined as [1]

Contents

or, equivalently, as

where s is spin, B is baryon number, and L is lepton number. All Standard Model particles have R-parity of +1 while supersymmetric particles have R-parity of 1.

Note that there are different forms of parity with different effects and principles, one should not confuse this parity with any other parity.

Dark matter candidate

With R-parity being preserved, the lightest supersymmetric particle (LSP) cannot decay. This lightest particle (if it exists) may therefore account for the observed missing mass of the universe that is generally called dark matter. [2] In order to fit observations, it is assumed that this particle has a mass of 100  GeV/c2 to 1  TeV/c2 , is neutral and only interacts through weak interactions and gravitational interactions. It is often called a weakly interacting massive particle or WIMP.

Typically the dark matter candidate of the MSSM is a mixture of the electroweak gauginos and Higgsinos and is called a neutralino. In extensions to the MSSM it is possible to have a sneutrino be the dark matter candidate. Another possibility is the gravitino, which only interacts via gravitational interactions and does not require strict R-parity.

R-parity violating couplings of the MSSM

The renormalizable R-parity violating couplings of the MSSM are

The strongest constraint involving this coupling alone is from the non-observation of neutron–antineutron oscillations.

The strongest constraint involving this coupling alone is the violation universality of Fermi constant in quark and leptonic charged current decays.

The strongest constraint involving this coupling alone is the violation universality of Fermi constant in leptonic charged current decays.

The strongest constraint involving this coupling alone is that it leads to a large neutrino mass.

While the constraints on single couplings are reasonably strong, if multiple couplings are combined together, they lead to proton decay. Thus there are further maximal bounds on values of the couplings from maximal bounds on proton decay rate.

Proton decay

R-parity violating decay.svg

Without baryon and lepton number being conserved and taking couplings for the R-parity violating couplings, the proton can decay in approximately 102 seconds or if minimal flavor violation is assumed the proton lifetime can be extended to 1 year. Since the proton lifetime is observed to be greater than 1033 to 1034 years (depending on the exact decay channel), this would highly disfavour the model. R-parity sets all of the renormalizable baryon and lepton number violating couplings to zero and the proton is stable at the renormalizable level and the lifetime of the proton is increased to 1032 years and is nearly consistent with current observational data.

Because proton decay involves violating both lepton and baryon number simultaneously, no single renormalizable R-parity violating coupling leads to proton decay. This has motivated the study of R-parity violation where only one set of the R-parity violating couplings are non-zero which is sometimes called the single coupling dominance hypothesis.

Possible origins of R-parity

A very attractive way to motivate R-parity is with a B − L continuous gauge symmetry which is spontaneously broken at a scale inaccessible to current experiments. A continuous forbids renormalizable terms which violate B and L. [3] [4] [5] [6] If is only broken by scalar vacuum expectation values (or other order parameters) that carry even integer values of 3(B − L), then there exist an exactly conserved discrete remnant subgroup which has the desired properties. [7] [8] [9] [10] [11] The crucial issue is to determine whether the sneutrino (the supersymmetric partner of neutrino), which is odd under R-parity, develops a vacuum expectation value. It can be shown, on phenomenological grounds, that this cannot happen in any theory where is broken at a scale much above the electroweak one. This is true in any theory based on a large-scale seesaw mechanism. [12] As a consequence, in such theories R-parity remains exact at all energies.

This phenomenon can arise as an automatic symmetry in SO(10) grand unified theories. This natural occurrence of R-parity is possible because in SO(10) the Standard Model fermions arise from the 16 dimensional spinor representation, while the Higgs arises from a 10 dimensional vector representation. In order to make an SO(10) invariant coupling, one must have an even number of spinor fields (i.e. there is a spinor parity). After GUT symmetry breaking, this spinor parity descends into R-parity so long as no spinor fields were used to break the GUT symmetry. Explicit examples of such SO(10) theories have been constructed. [13] [14]

See also

Related Research Articles

<span class="mw-page-title-main">Proton decay</span> Hypothetical decay process of a nucleon (proton or neutron) into non-nucleons (anything else)

In particle physics, proton decay is a hypothetical form of particle decay in which the proton decays into lighter subatomic particles, such as a neutral pion and a positron. The proton decay hypothesis was first formulated by Andrei Sakharov in 1967. Despite significant experimental effort, proton decay has never been observed. If it does decay via a positron, the proton's half-life is constrained to be at least 1.67×1034 years.

In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist. Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi–Dirac statistics. In supersymmetry, each particle from one class would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. For example, if the electron exists in a supersymmetric theory, then there would be a particle called a selectron, a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly "unbroken" supersymmetry, each pair of superpartners would share the same mass and internal quantum numbers besides spin. More complex supersymmetry theories have a spontaneously broken symmetry, allowing superpartners to differ in mass.

<span class="mw-page-title-main">Technicolor (physics)</span> Hypothetical model through which W and Z bosons acquire mass

Technicolor theories are models of physics beyond the Standard Model that address electroweak gauge symmetry breaking, the mechanism through which W and Z bosons acquire masses. Early technicolor theories were modelled on quantum chromodynamics (QCD), the "color" theory of the strong nuclear force, which inspired their name.

In theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is equivalent to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have more left than right, or vice versa.

In particle physics, the baryon number is a strictly conserved additive quantum number of a system. It is defined as

In physical cosmology, baryogenesis is the physical process that is hypothesized to have taken place during the early universe to produce baryonic asymmetry, i.e. the imbalance of matter (baryons) and antimatter (antibaryons) in the observed universe.

<span class="mw-page-title-main">Minimal Supersymmetric Standard Model</span> Simplest supersymmetric extension to the Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is an extension to the Standard Model that realizes supersymmetry. MSSM is the minimal supersymmetrical model as it considers only "the [minimum] number of new particle states and new interactions consistent with "Reality". Supersymmetry pairs bosons with fermions with graviton and large antigraviton based on semisecondary spin<autor Jaallmehr></Boris Bartošek> so every Standard Model particle has a superpartner yet undiscovered. If discovered, such superparticles could be candidates for dark matter, and could provide evidence for grand unification or the viability of string theory. The failure to find evidence for MSSM using the Large Hadron Collider has strengthened an inclination to abandon it.

In particle physics, majorons are a hypothetical type of Goldstone boson that are conjectured to mediate the neutrino mass violation of lepton number or BL in certain high energy collisions such as

In supergravity theories combining general relativity and supersymmetry, the gravitino is the gauge fermion supersymmetric partner of the hypothesized graviton. It has been suggested as a candidate for dark matter.

<span class="mw-page-title-main">Chargino</span>

In particle physics, the chargino is a hypothetical particle which refers to the mass eigenstates of a charged superpartner, i.e. any new electrically charged fermion predicted by supersymmetry. They are linear combinations of the charged wino and charged higgsinos. There are two charginos that are fermions and are electrically charged, which are typically labeled
±
1
and
±
2
, although sometimes and are also used to refer to charginos, when is used to refer to neutralinos. The heavier chargino can decay through the neutral Z boson to the lighter chargino. Both can decay through a charged W boson to a neutralino:

In particle physics, lepton number is a conserved quantum number representing the difference between the number of leptons and the number of antileptons in an elementary particle reaction. Lepton number is an additive quantum number, so its sum is preserved in interactions. Mathematically, the lepton number is defined by

<span class="mw-page-title-main">Baryon asymmetry</span> Imbalance of matter and antimatter in the observable universe

In physical cosmology, the baryon asymmetry problem, also known as the matter asymmetry problem or the matter–antimatter asymmetry problem, is the observed imbalance in baryonic matter and antibaryonic matter in the observable universe. Neither the standard model of particle physics nor the theory of general relativity provides a known explanation for why this should be so, and it is a natural assumption that the universe is neutral with all conserved charges. The Big Bang should have produced equal amounts of matter and antimatter. Since this does not seem to have been the case, it is likely some physical laws must have acted differently or did not exist for matter and antimatter. Several competing hypotheses exist to explain the imbalance of matter and antimatter that resulted in baryogenesis. However, there is as of yet no consensus theory to explain the phenomenon, which has been described as "one of the great mysteries in physics".

In quantum field theory, Seiberg duality, conjectured by Nathan Seiberg in 1994, is an S-duality relating two different supersymmetric QCDs. The two theories are not identical, but they agree at low energies. More precisely under a renormalization group flow they flow to the same IR fixed point, and so are in the same universality class. It is an extension to nonabelian gauge theories with N=1 supersymmetry of Montonen–Olive duality in N=4 theories and electromagnetic duality in abelian theories.

Pran Nath is a theoretical physicist working at Northeastern University, with research focus in elementary particle physics. He holds a Matthews Distinguished University Professor chair.

Savas Dimopoulos is a particle physicist at Stanford University. He worked at CERN from 1994 to 1997. Dimopoulos is well known for his work on constructing theories beyond the Standard Model.

<span class="mw-page-title-main">Physics beyond the Standard Model</span> Theories trying to extend known physics

Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as spacetime singularities like the Big Bang and black hole event horizons.

In particle physics, NMSSM is an acronym for Next-to-Minimal Supersymmetric Standard Model. It is a supersymmetric extension to the Standard Model that adds an additional singlet chiral superfield to the MSSM and can be used to dynamically generate the term, solving the -problem. Articles about the NMSSM are available for review.

In particle physics and string theory (M-theory), the ADD model, also known as the model with large extra dimensions (LED), is a model framework that attempts to solve the hierarchy problem. The model tries to explain this problem by postulating that our universe, with its four dimensions, exists on a membrane in a higher dimensional space. It is then suggested that the other forces of nature operate within this membrane and its four dimensions, while the hypothetical gravity-bearing particle graviton can propagate across the extra dimensions. This would explain why gravity is very weak compared to the other fundamental forces. The size of the dimensions in ADD is around the order of the TeV scale, which results in it being experimentally probeable by current colliders, unlike many exotic extra dimensional hypotheses that have the relevant size around the Planck scale.

In particle physics, W′ and Z′ bosons refer to hypothetical gauge bosons that arise from extensions of the electroweak symmetry of the Standard Model. They are named in analogy with the Standard Model W and Z bosons.

References

  1. Martin, S. P. (6 Sep 2011). "A Supersymmetry Primer". Advanced Series on Directions in High Energy Physics. 18: 1–98. arXiv: hep-ph/9709356 . doi:10.1142/9789812839657_0001. ISBN   978-981-02-3553-6. S2CID   118973381.
  2. Jungman, G.; Kamionkowski, M.; Griest, K. (1996). "Supersymmetric dark matter". Physics Reports. 267 (5–6): 195–373. arXiv: hep-ph/9506380 . Bibcode:1996PhR...267..195J. doi:10.1016/0370-1573(95)00058-5. S2CID   119067698.
  3. Mohapatra, R.N. (1986). "New contributions to neutrinoless double-beta decay in supersymmetric theories". Physical Review D . 34 (11): 3457–3461. Bibcode:1986PhRvD..34.3457M. doi:10.1103/PhysRevD.34.3457. PMID   9957083.
  4. Font, A.; Ibáñez, L.E.; Quevedo, F. (1989). "Does proton stability imply the existence of an extra Z0?" (PDF). Physics Letters B . 228 (1): 79–88. Bibcode:1989PhLB..228...79F. doi:10.1016/0370-2693(89)90529-7.
  5. Martin, S.P. (1992). "Some simple criteria for gauged R parity". Physical Review D . 46 (7): R2769–R2772. arXiv: hep-ph/9207218 . Bibcode:1992PhRvD..46.2769M. doi:10.1103/PhysRevD.46.R2769. PMID   10015267. S2CID   14821065.
  6. Martin, S.P. (1996). "Implications of supersymmetric models with natural R-parity conservation". Physical Review D . 54 (3): 2340–2348. arXiv: hep-ph/9602349 . Bibcode:1996PhRvD..54.2340M. doi:10.1103/PhysRevD.54.2340. PMID   10020912. S2CID   5751474.
  7. Fayet, P. (1975). "Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino". Nuclear Physics B . 90: 104–124. Bibcode:1975NuPhB..90..104F. doi:10.1016/0550-3213(75)90636-7.
  8. Salam, A.; Strathdee, J. (1975). "Supersymmetry and fermion-number conservation". Nuclear Physics B . 87 (1): 85–92. Bibcode:1975NuPhB..87...85S. doi:10.1016/0550-3213(75)90253-9.
  9. Farrar, G.R.; Weinberg, S. (1983). "Supersymmetry at ordinary energies. II. R invariance, Goldstone bosons, and gauge-fermion masses". Physical Review D . 27 (11): 2732. Bibcode:1983PhRvD..27.2732F. doi:10.1103/PhysRevD.27.2732.
  10. Fayet, P. (1977). "Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions". Physics Letters B . 69 (4): 489–494. Bibcode:1977PhLB...69..489F. doi:10.1016/0370-2693(77)90852-8.
  11. Farrar, G.R.; Fayet, P. (1978). "Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry". Physics Letters B . 76 (5): 575. Bibcode:1978PhLB...76..575F. doi:10.1016/0370-2693(78)90858-4.
  12. Aulakh, C.S.; Melfo, A.; Rašin, A.; Senjanović, G. (1998). "Supersymmetry and large scale left-right symmetry". Physical Review D . 58 (11): 115007. arXiv: hep-ph/9712551 . Bibcode:1998PhRvD..58k5007A. doi:10.1103/PhysRevD.58.115007. S2CID   43296921.
  13. Aulakh, C.S.; Bajc, B.; Melfo, A.; Rašin, A.; Senjanović, G. (2001). "SO(10) theory of R-parity and neutrino mass". Nuclear Physics B . 597 (1–3): 89–109. arXiv: hep-ph/0004031 . Bibcode:2001NuPhB.597...89A. doi:10.1016/S0550-3213(00)00721-5. S2CID   119100803.
  14. Aulakh, C.S.; Bajc, B.; Melfo, A.; Senjanović, G.; Vissani, F. (2004). "The minimal supersymmetric grand unified theory". Physics Letters B . 588 (3–4): 196–202. arXiv: hep-ph/0306242 . Bibcode:2004PhLB..588..196A. doi:10.1016/j.physletb.2004.03.031. S2CID   119401374.