Semiconductor intellectual property core

Last updated

In electronic design, a semiconductor intellectual property core (SIP core), IP core or IP block is a reusable unit of logic, cell, or integrated circuit layout design that is the intellectual property of one party. IP cores can be licensed to another party or owned and used by a single party. The term comes from the licensing of the patent or source code copyright that exists in the design. Designers of system on chip (SoC), application-specific integrated circuits (ASIC) and systems of field-programmable gate array (FPGA) logic can use IP cores as building blocks.

Contents

History

The licensing and use of IP cores in chip design came into common practice in the 1990s. [1] There were many licensors and also many foundries competing on the market. In 2013, the most widely licensed IP cores were from Arm Holdings (43.2% market share), Synopsys Inc. (13.9% market share), Imagination Technologies (9% market share) and Cadence Design Systems (5.1% market share). [2]

Types of IP cores

The use of an IP core in chip design is comparable to the use of a library for computer programming or a discrete integrated circuit component for printed circuit board design. Each is a reusable component of design logic with a defined interface and behavior that has been verified by its creator and is integrated into a larger design.

Soft cores

IP cores are commonly offered as synthesizable RTL in a hardware description language such as Verilog or VHDL. These are analogous to low-level languages such as C in the field of computer programming. IP cores delivered to chip designers as RTL permit chip designers to modify designs at the functional level, though many IP vendors offer no warranty or support for modified designs.[ citation needed ]

IP cores are also sometimes offered as generic gate-level netlists. The netlist is a boolean-algebra representation of the IP's logical function implemented as generic gates or process-specific standard cells. An IP core implemented as generic gates can be compiled for any process technology. A gate-level netlist is analogous to an assembly code listing in the field of computer programming. A netlist gives the IP core vendor reasonable protection against reverse engineering. See also: integrated circuit layout design protection.

Both netlist and synthesizable cores are called soft cores since both allow a synthesis, placement and routing (SPR) design flow.

Hard cores

Hard cores (or hard macros) are analog or digital IP cores whose function cannot be significantly modified by chip designers. These are generally defined as a lower-level physical description that is specific to a particular process technology. Hard cores usually offer better predictability of chip timing performance and area for their particular technology.[ citation needed ]

Analog and mixed-signal logic are generally distributed as hard cores. Hence, analog IP (SerDes, PLLs, DAC, ADC, PHYs, etc.) are provided to chip makers in transistor-layout format (such as GDSII). Digital IP cores are sometimes offered in layout format as well.

Low-level transistor layouts must obey the target foundry's process design rules. Therefore, hard cores delivered for one foundry's process cannot be easily ported to a different process or foundry. Merchant foundry operators (such as IBM, Fujitsu, Samsung, TI, etc.) offer various hard-macro IP functions built for their own foundry processes, helping to ensure customer lock-in.

Sources of IP cores

Licensed functionality

Many of the best known IP cores are soft microprocessor designs. Their instruction sets vary from small 8-bit processors, such as the 8051 and PIC, to 32-bit and 64-bit processors such as the ARM architectures or RISC-V architectures. Such processors form the "brains" of many embedded systems. They are usually RISC instruction sets rather than CISC instruction sets like x86 because less logic is required. Therefore, designs are smaller. Further, x86 leaders Intel and AMD heavily protect their processor designs' intellectual property and don't use this business model for their x86-64 lines of microprocessors.

IP cores are also licensed for various peripheral controllers such as for PCI Express, SDRAM, Ethernet, LCD display, AC'97 audio, and USB. Many of those interfaces require both digital logic and analog IP cores to drive and receive high speed, high voltage, or high impedance signals outside of the chip.

"Hardwired" (as opposed to software programmable soft microprocessors described above) digital logic IP cores are also licensed for fixed functions such as MP3 audio decode, 3D GPU, digital video encode/decode, and other DSP functions such as FFT, DCT, or Viterbi coding.

Vendors

IP core developers and licensors range in size from individuals to multi-billion-dollar corporations. Developers, as well as their chip-making customers, are located throughout the world.

Silicon Intellectual Property (SIP, Silicon IP) is a business model for a semiconductor company where it licenses its technology to a customer as intellectual property. A company with such a business model is a fabless semiconductor company, which doesn't provide physical chips to its customers but merely facilitates the customer's development of chips by offering certain functional blocks. Typically, the customers are semiconductor companies or module developers with in-house semiconductor development. A company wishing to fabricate a complex device may license in the rights to use another company's well-tested functional blocks such as a microprocessor, instead of developing their own design, which would require additional time and cost.

The Silicon IP industry has had stable growth for many years. The most successful Silicon IP companies, often referred to as the Star IP, include ARM Holdings and Synopsys. Gartner Group estimated the total value of sales related to silicon intellectual property at US $1.5 billion in 2005 with annual growth expected around 30%. [3] [ needs update ]

IP hardening

IP hardening is a process to re-use proven designs and generate fast time-to-market, low-risk-in-fabrication solutions to provide Intellectual property (IP) (or Silicon intellectual property) of design cores.

For example, a digital signal processor (DSP) is developed from soft cores of RTL format, and it can be targeted to various technologies or different foundries to yield different implementations. The process of IP hardening is from soft core to generate re-usable hard (hardware) cores[ clarification needed ]. A main advantage of such hard IP is its predictable characteristics as the IP has been pre-implemented, while it offers flexibility of soft cores. It might come with a set of models for simulations for verification.

The effort to harden soft IP requires employing the quality of the target technology, goals of design and the methodology. The hard IP has been proven in the target technology and application. E.g. the hard core in GDS II format is said to clean in DRC (Design rule checking), and LVS (see Layout Versus Schematic). I.e. that can pass all the rules required for manufacturing by the specific foundry. [4] [5]

Free and open-source

Since around 2000, OpenCores.org has offered various soft cores, mostly written in VHDL and Verilog. All of these cores are provided under free and open-source software-license such as GNU General Public License or BSD-like licenses. [6] Since 2010, initiatives such as RISC-V have caused a massive expansion in the number of IP cores available (almost 50 by 2019 [7] ). This has helped to increase collaboration in developing secure and efficient designs. [8]

See also

Related Research Articles

Processor design is a subfield of computer science and computer engineering (fabrication) that deals with creating a processor, a key component of computer hardware.

<span class="mw-page-title-main">Field-programmable gate array</span> Array of logic gates that are reprogrammable

A field-programmable gate array (FPGA) is a type of integrated circuit that can be programmed or reprogrammed after manufacturing. It consists of an array of programmable logic blocks and interconnects that can be configured to perform various digital functions. FPGAs are commonly used in applications where flexibility, speed, and parallel processing capabilities are required, such as in telecommunications, automotive, aerospace, and industrial sectors.

<span class="mw-page-title-main">Integrated circuit</span> Electronic circuit formed on a small, flat piece of semiconductor material

An integrated circuit, also known as a microchip or IC, is a small electronic device made up of multiple interconnected electronic components such as transistors, resistors, and capacitors. These components are etched onto a small piece of semiconductor material, usually silicon. Integrated circuits are used in a wide range of electronic devices, including computers, smartphones, and televisions, to perform various functions such as processing and storing information. They have greatly impacted the field of electronics by enabling device miniaturization and enhanced functionality.

<span class="mw-page-title-main">Microprocessor</span> Computer processor contained on an integrated-circuit chip

A microprocessor is a computer processor for which the data processing logic and control is included on a single integrated circuit (IC), or a small number of ICs. The microprocessor contains the arithmetic, logic, and control circuitry required to perform the functions of a computer's central processing unit (CPU). The IC is capable of interpreting and executing program instructions and performing arithmetic operations. The microprocessor is a multipurpose, clock-driven, register-based, digital integrated circuit that accepts binary data as input, processes it according to instructions stored in its memory, and provides results as output. Microprocessors contain both combinational logic and sequential digital logic, and operate on numbers and symbols represented in the binary number system.

<span class="mw-page-title-main">MIPS Technologies</span> American fabless semiconductor design company

MIPS, formerly MIPS Computer Systems, Inc. and MIPS Technologies, Inc., is an American fabless semiconductor design company that is most widely known for developing the MIPS architecture and a series of RISC CPU chips based on it. MIPS provides processor architectures and cores for digital home, networking, embedded, Internet of things and mobile applications.

<span class="mw-page-title-main">Very Large Scale Integration</span> Creating an integrated circuit by combining many transistors into a single chip

Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining millions or billions of MOS transistors onto a single chip. VLSI began in the 1970s when MOS integrated circuit chips were developed and then widely adopted, enabling complex semiconductor and telecommunication technologies. The microprocessor and memory chips are VLSI devices.

<span class="mw-page-title-main">System on a chip</span> Micro-electronic component

A system on a chip or system-on-chip is an integrated circuit that integrates most or all components of a computer or other electronic system. These components almost always include on-chip central processing unit (CPU), memory interfaces, input/output devices and interfaces, and secondary storage interfaces, often alongside other components such as radio modems and a graphics processing unit (GPU) – all on a single substrate or microchip. SoCs may contain digital and also analog, mixed-signal and often radio frequency signal processing functions.

<span class="mw-page-title-main">Application-specific integrated circuit</span> Integrated circuit customized for a specific task

An application-specific integrated circuit is an integrated circuit (IC) chip customized for a particular use, rather than intended for general-purpose use, such as a chip designed to run in a digital voice recorder or a high-efficiency video codec. Application-specific standard product chips are intermediate between ASICs and industry standard integrated circuits like the 7400 series or the 4000 series. ASIC chips are typically fabricated using metal–oxide–semiconductor (MOS) technology, as MOS integrated circuit chips.

Electronic design automation (EDA), also referred to as electronic computer-aided design (ECAD), is a category of software tools for designing electronic systems such as integrated circuits and printed circuit boards. The tools work together in a design flow that chip designers use to design and analyze entire semiconductor chips. Since a modern semiconductor chip can have billions of components, EDA tools are essential for their design; this article in particular describes EDA specifically with respect to integrated circuits (ICs).

<span class="mw-page-title-main">Western Design Center</span> American company

The Western Design Center (WDC), located in Mesa, Arizona, is a company which develops intellectual property for, and licenses manufacture of, MOS Technology 65xx based microprocessors, microcontrollers (µCs), and related support devices. WDC was founded in 1978 by a former MOS Technology employee and coholder of the MOS Technology 6502 patent, Bill Mensch.

<span class="mw-page-title-main">Altera</span> U.S. information technology company

Altera Corporation was a manufacturer of programmable logic devices (PLDs) headquartered in San Jose, California. It was founded in 1983 and acquired by Intel in 2015.

LEON is a radiation-tolerant 32-bit central processing unit (CPU) microprocessor core that implements the SPARC V8 instruction set architecture (ISA) developed by Sun Microsystems. It was originally designed by the European Space Research and Technology Centre (ESTEC), part of the European Space Agency (ESA), without any involvement by Sun. Later versions have been designed by Gaisler Research, under a variety of owners. It is described in synthesizable VHSIC Hardware Description Language (VHDL). LEON has a dual license model: An GNU Lesser General Public License (LGPL) and GNU General Public License (GPL) free and open-source software (FOSS) license that can be used without licensing fee, or a proprietary license that can be purchased for integration in a proprietary product. The core is configurable through VHDL generics, and is used in system on a chip (SOC) designs both in research and commercial settings.

VLSI Technology, Inc., was an American company that designed and manufactured custom and semi-custom integrated circuits (ICs). The company was based in Silicon Valley, with headquarters at 1109 McKay Drive in San Jose. Along with LSI Logic, VLSI Technology defined the leading edge of the application-specific integrated circuit (ASIC) business, which accelerated the push of powerful embedded systems into affordable products.

Lexra (1997–2003) was a semiconductor intellectual property core company based in Waltham, Massachusetts. Lexra developed and licensed semiconductor intellectual property cores that implemented the MIPS I architecture, except for the four unaligned load and store instructions.

<span class="mw-page-title-main">Integrated circuit design</span> Engineering process for electronic hardware

Integrated circuit design, or IC design, is a sub-field of electronics engineering, encompassing the particular logic and circuit design techniques required to design integrated circuits, or ICs. ICs consist of miniaturized electronic components built into an electrical network on a monolithic semiconductor substrate by photolithography.

<span class="mw-page-title-main">Tensilica</span> Semiconductor company in California, US

Tensilica Inc. was a company based in Silicon Valley in the semiconductor intellectual property core business. It is now a part of Cadence Design Systems.

The quality intellectual property metric (QIP) is an international standard, developed by Virtual Socket Interface Alliance (VSIA) for measuring Intellectual Property (IP) or Silicon intellectual property (SIP) quality and examining the practices used to design, integrate and support the SIP. SIP hardening is required to facilitate the reuse of IP in integrated circuit design.

<span class="mw-page-title-main">Arm Holdings</span> British multinational semiconductor and software design company

Arm Holdings plc is a British semiconductor and software design company based in Cambridge, England, whose primary business is the design of central processing unit (CPU) cores that implement the ARM architecture family of instruction sets. It also designs other chips, provides software development tools under the DS-5, RealView and Keil brands, and provides systems and platforms, system-on-a-chip (SoC) infrastructure and software. As a "holding" company, it also holds shares of other companies. Since 2016, it has been owned by Japanese conglomerate SoftBank Group.

The R2000 is a 32-bit microprocessor chip set developed by MIPS Computer Systems that implemented the MIPS I instruction set architecture (ISA). Introduced in January 1986, it was the first commercial implementation of the MIPS architecture and the first commercial RISC processor available to all companies. The R2000 competed with Digital Equipment Corporation (DEC) VAX minicomputers and with Motorola 68000 and Intel Corporation 80386 microprocessors. R2000 users included Ardent Computer, DEC, Silicon Graphics, Northern Telecom and MIPS's own Unix workstations.

Since 1985, many processors implementing some version of the MIPS architecture have been designed and used widely.

References

  1. Tuomi, Ilkka (2009-12-04). "The Future of Semiconductor Intellectual Property Architectural Blocks in Europe". JRC Publications Repository. Retrieved 2023-08-02.
  2. Clark, Peter (April 23, 2014). "Cadence breaks into top four in semi IP core ranking". EE Times Europe. No. N/A. Peter Clark. European Business Press SA. Archived from the original on August 2, 2014. Retrieved July 14, 2014.
  3. Kiat Seng Yeo, Kim Tean Ng, Zhi Hui Kong Intellectual Property for Integrated Circuits , J. Ross Publishing, 2010 ISBN   1-932159-85-1
  4. http://www.eettaiwan.com/ART_8800406094_480102_AN_71148c3a.HTM Archived 2009-08-04 at the Wayback Machine IP hardening by eetTaiwan Dead link 2011 06 30
  5. More about IP hardening. An organization (which is set up by government) provides services of IP hardening and IP integration. In Chinese.
  6. "Licensing :: OpenCores". opencores.org. Retrieved 2019-11-14.
  7. "RISC-V Cores and SoC Overview". RISC-V Foundation. Archived from the original on 24 April 2020. Retrieved 8 October 2019.
  8. Daunhauer, Denis. "The relevance of open source intellectual property cores for the IoT development". Internet of Things blog. Deloitte. Retrieved 8 October 2019.