Sodium-hydrogen antiporter 3 regulator 1

Last updated
SLC9A3R1
Protein SLC9A3R1 PDB 1g9o.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases SLC9A3R1 , EBP50, NHERF, NHERF-1, NHERF1, NPHLOP2, Sodium-hydrogen antiporter 3 regulator 1, SLC9A3 regulator 1
External IDs OMIM: 604990 MGI: 1349482 HomoloGene: 3137 GeneCards: SLC9A3R1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_004252

NM_012030

RefSeq (protein)

NP_004243

NP_036160

Location (UCSC) Chr 17: 74.75 – 74.77 Mb Chr 11: 115.05 – 115.07 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Sodium-hydrogen antiporter 3 regulator 1 is a regulator of Sodium-hydrogen antiporter 3. It is encoded by the gene SLC9A3R1. It is also known as ERM Binding Protein 50 (EBP50) or Na+/H+ Exchanger Regulatory Factor (NHERF1). It is believed [5] to interact via long-range allostery, involving significant protein dynamics.

Mechanism

Members of the ezrin (VIL2; MIM 123900)-radixin (RDX; MIM 179410)-moesin (MSN; MIM 309845) (ERM) protein family are highly concentrated in the apical aspect of polarized epithelial cells. These cells are studded with microvilli containing bundles of actin filaments, which must attach to the membrane to assemble and maintain the microvilli. The ERM proteins, together with merlin, the NF2 (MIM 607379) gene product, are thought to be linkers between integral membrane and cytoskeletal proteins, and they bind directly to actin in vitro. Actin cytoskeleton reorganization requires the activation of a sodium/hydrogen exchanger (SLC9A3; MIM 182307). SLC9A3R1 is an ERM-binding protein.[supplied by OMIM] [6]

Interactions

Sodium-hydrogen antiporter 3 regulator 1 has been shown to interact with:

See also

Related Research Articles

<span class="mw-page-title-main">Cystic fibrosis transmembrane conductance regulator</span> Mammalian protein found in humans

Cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane protein and anion channel in vertebrates that is encoded by the CFTR gene.

<span class="mw-page-title-main">Merlin (protein)</span> Mammalian protein found in Homo sapiens

Merlin is a cytoskeletal protein. In humans, it is a tumor suppressor protein involved in neurofibromatosis type II. Sequence data reveal its similarity to the ERM protein family.

<span class="mw-page-title-main">ACVR2B</span> Protein-coding gene in the species Homo sapiens

Activin receptor type-2B is a protein that in humans is encoded by the ACVR2B gene. ACVR2B is an activin type 2 receptor.

<span class="mw-page-title-main">CD43</span> Mammalian protein found in Homo sapiens

Leukosialin also known as sialophorin or CD43 is a transmembrane cell surface protein that in humans is encoded by the SPN (sialophorin) gene.

<span class="mw-page-title-main">Ezrin</span> Protein-coding gene in the species Homo sapiens

Ezrin also known as cytovillin or villin-2 is a protein that in humans is encoded by the EZR gene.

<span class="mw-page-title-main">Sodium-hydrogen exchange regulatory cofactor 2</span> Protein-coding gene in the species Homo sapiens

Sodium-hydrogen exchange regulatory cofactor NHE-RF2 (NHERF-2) also known as tyrosine kinase activator protein 1 (TKA-1) or SRY-interacting protein 1 (SIP-1) is a protein that in humans is encoded by the SLC9A3R2 gene.

<span class="mw-page-title-main">DLG3</span> Protein-coding gene in humans

Disks large homolog 3 (DLG3) also known as neuroendocrine-DLG or synapse-associated protein 102 (SAP-102) is a protein that in humans is encoded by the DLG3 gene. DLG3 is a member of the membrane-associated guanylate kinase (MAGUK) superfamily of proteins.

<span class="mw-page-title-main">Syntenin-1</span> Protein-coding gene in the species Homo sapiens

Syntenin-1 is a protein that in humans is encoded by the SDCBP gene.

<span class="mw-page-title-main">GNAQ</span> Protein-coding gene in the species Homo sapiens

Guanine nucleotide-binding protein G(q) subunit alpha is a protein that in humans is encoded by the GNAQ gene. Together with GNA11, it functions as a Gq alpha subunit.

<span class="mw-page-title-main">Moesin</span> Protein-coding gene in the species Homo sapiens

Moesin is a protein that in humans is encoded by the MSN gene.

<span class="mw-page-title-main">Radixin</span> Protein-coding gene in the species Homo sapiens

Radixin is a protein that in humans is encoded by the RDX gene.

<span class="mw-page-title-main">PDZK1</span> Protein-coding gene in the species Homo sapiens

Na(+)/H(+) exchange regulatory cofactor NHE-RF3 is a protein that in humans is encoded by the PDZK1 gene.

<span class="mw-page-title-main">GOPC</span> Protein-coding gene in the species Homo sapiens

Golgi-associated PDZ and coiled-coil motif-containing protein is a protein that in humans is encoded by the GOPC gene.

<span class="mw-page-title-main">ASIC1</span> Protein-coding gene in humans

Acid-sensing ion channel 1 (ASIC1) also known as amiloride-sensitive cation channel 2, neuronal (ACCN2) or brain sodium channel 2 (BNaC2) is a protein that in humans is encoded by the ASIC1 gene. The ASIC1 gene is one of the five paralogous genes that encode proteins that form trimeric acid-sensing ion channels (ASICs) in mammals. The cDNA of this gene was first cloned in 1996. The ASIC genes have splicing variants that encode different proteins that are called isoforms.

<span class="mw-page-title-main">PLXNB1</span> Protein-coding gene in the species Homo sapiens

Plexin B1 is a protein of the plexin family that in humans is encoded by the PLXNB1 gene.

<span class="mw-page-title-main">CLCN3</span> Protein-coding gene in the species Homo sapiens

H+/Cl exchange transporter 3 is a protein that in humans is encoded by the CLCN3 gene.

<span class="mw-page-title-main">Electroneutral sodium bicarbonate exchanger 1</span> Protein-coding gene in the species Homo sapiens

Electroneutral sodium bicarbonate exchanger 1 is a protein that in humans is encoded by the SLC4A8 gene.

<span class="mw-page-title-main">PTGFRN</span> Protein-coding gene in the species Homo sapiens

Prostaglandin F2 receptor negative regulator is a protein that in humans is encoded by the PTGFRN gene. PTGFRN has also been designated as CD315.

<span class="mw-page-title-main">MYLIP</span> Protein-coding gene in the species Homo sapiens

Myosin regulatory light chain interacting protein, also known as MYLIP, is a protein that in humans is encoded by the MYLIP gene.

<span class="mw-page-title-main">Sodium/hydrogen exchanger 6</span> Protein-coding gene in the species Homo sapiens

Sodium/hydrogen exchanger 6 is an integral membrane protein that in humans is encoded by the SLC9A6 gene. It was originally thought to be a mitochondrial-targeted protein, but subsequent studies have localized it to the plasma membrane and recycling endosomes.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000109062 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000020733 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Farago B, Li J, Cornilescu G, Callaway DJ, Bu Z (November 2010). "Activation of nanoscale allosteric protein domain motion revealed by neutron spin echo spectroscopy". Biophys. J. 99 (10): 3473–82. Bibcode:2010BpJ....99.3473F. doi:10.1016/j.bpj.2010.09.058. PMC   2980739 . PMID   21081097.
  6. "Entrez Gene: SLC9A3R1 solute carrier family 9 (sodium/hydrogen exchanger), member 3 regulator 1".
  7. Karthikeyan S, Leung T, Ladias JA (May 2002). "Structural determinants of the Na+/H+ exchanger regulatory factor interaction with the beta 2 adrenergic and platelet-derived growth factor receptors". J. Biol. Chem. 277 (21): 18973–8. doi: 10.1074/jbc.M201507200 . PMID   11882663.
  8. 1 2 Hall RA, Ostedgaard LS, Premont RT, Blitzer JT, Rahman N, Welsh MJ, Lefkowitz RJ (July 1998). "A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins". Proc. Natl. Acad. Sci. U.S.A. 95 (15): 8496–501. Bibcode:1998PNAS...95.8496H. doi: 10.1073/pnas.95.15.8496 . PMC   21104 . PMID   9671706.
  9. Hall RA, Premont RT, Chow CW, Blitzer JT, Pitcher JA, Claing A, Stoffel RH, Barak LS, Shenolikar S, Weinman EJ, Grinstein S, Lefkowitz RJ (April 1998). "The beta2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange". Nature. 392 (6676): 626–30. Bibcode:1998Natur.392..626H. doi:10.1038/33458. PMID   9560162. S2CID   4422540.
  10. Shibata T, Chuma M, Kokubu A, Sakamoto M, Hirohashi S (July 2003). "EBP50, a beta-catenin-associating protein, enhances Wnt signaling and is over-expressed in hepatocellular carcinoma". Hepatology. 38 (1): 178–86. doi: 10.1053/jhep.2003.50270 . PMID   12830000. S2CID   10325091.
  11. 1 2 Park M, Ko SB, Choi JY, Muallem G, Thomas PJ, Pushkin A, Lee MS, Kim JY, Lee MG, Muallem S, Kurtz I (Dec 2002). "The cystic fibrosis transmembrane conductance regulator interacts with and regulates the activity of the HCO3- salvage transporter human Na+-HCO3- cotransport isoform 3". J. Biol. Chem. 277 (52): 50503–9. doi: 10.1074/jbc.M201862200 . PMID   12403779.
  12. Hegedüs T, Sessler T, Scott R, Thelin W, Bakos E, Váradi A, Szabó K, Homolya L, Milgram SL, Sarkadi B (March 2003). "C-terminal phosphorylation of MRP2 modulates its interaction with PDZ proteins". Biochem. Biophys. Res. Commun. 302 (3): 454–61. doi:10.1016/S0006-291X(03)00196-7. PMID   12615054.
  13. Wang S, Raab RW, Schatz PJ, Guggino WB, Li M (May 1998). "Peptide binding consensus of the NHE-RF-PDZ1 domain matches the C-terminal sequence of cystic fibrosis transmembrane conductance regulator (CFTR)". FEBS Lett. 427 (1): 103–8. doi: 10.1016/S0014-5793(98)00402-5 . PMID   9613608. S2CID   20803242.
  14. Moyer BD, Duhaime M, Shaw C, Denton J, Reynolds D, Karlson KH, Pfeiffer J, Wang S, Mickle JE, Milewski M, Cutting GR, Guggino WB, Li M, Stanton BA (September 2000). "The PDZ-interacting domain of cystic fibrosis transmembrane conductance regulator is required for functional expression in the apical plasma membrane". J. Biol. Chem. 275 (35): 27069–74. doi: 10.1074/jbc.M004951200 . PMID   10852925.
  15. Gentzsch M, Cui L, Mengos A, Chang XB, Chen JH, Riordan JR (February 2003). "The PDZ-binding chloride channel ClC-3B localizes to the Golgi and associates with cystic fibrosis transmembrane conductance regulator-interacting PDZ proteins". J. Biol. Chem. 278 (8): 6440–9. doi: 10.1074/jbc.M211050200 . PMID   12471024.
  16. Short DB, Trotter KW, Reczek D, Kreda SM, Bretscher A, Boucher RC, Stutts MJ, Milgram SL (July 1998). "An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton". J. Biol. Chem. 273 (31): 19797–801. doi: 10.1074/jbc.273.31.19797 . PMID   9677412.
  17. Rochdi MD, Watier V, La Madeleine C, Nakata H, Kozasa T, Parent JL (October 2002). "Regulation of GTP-binding protein alpha q (Galpha q) signaling by the ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50)". J. Biol. Chem. 277 (43): 40751–9. doi: 10.1074/jbc.M207910200 . PMID   12193606.
  18. Huang P, Steplock D, Weinman EJ, Hall RA, Ding Z, Li J, Wang Y, Liu-Chen LY (June 2004). "kappa Opioid receptor interacts with Na(+)/H(+)-exchanger regulatory factor-1/Ezrin-radixin-moesin-binding phosphoprotein-50 (NHERF-1/EBP50) to stimulate Na(+)/H(+) exchange independent of G(i)/G(o) proteins". J. Biol. Chem. 279 (24): 25002–9. doi: 10.1074/jbc.M313366200 . PMID   15070904.
  19. Li JG, Chen C, Liu-Chen LY (July 2002). "Ezrin-radixin-moesin-binding phosphoprotein-50/Na+/H+ exchanger regulatory factor (EBP50/NHERF) blocks U50,488H-induced down-regulation of the human kappa opioid receptor by enhancing its recycling rate". J. Biol. Chem. 277 (30): 27545–52. doi: 10.1074/jbc.M200058200 . PMID   12004055.
  20. 1 2 Brdicková N, Brdicka T, Andera L, Spicka J, Angelisová P, Milgram SL, Horejsí V (October 2001). "Interaction between two adapter proteins, PAG and EBP50: a possible link between membrane rafts and actin cytoskeleton". FEBS Lett. 507 (2): 133–6. doi: 10.1016/S0014-5793(01)02955-6 . PMID   11684085. S2CID   12676563.
  21. 1 2 Maudsley S, Zamah AM, Rahman N, Blitzer JT, Luttrell LM, Lefkowitz RJ, Hall RA (November 2000). "Platelet-derived growth factor receptor association with Na(+)/H(+) exchanger regulatory factor potentiates receptor activity". Mol. Cell. Biol. 20 (22): 8352–63. doi:10.1128/MCB.20.22.8352-8363.2000. PMC   102142 . PMID   11046132.
  22. Gisler SM, Pribanic S, Bacic D, Forrer P, Gantenbein A, Sabourin LA, Tsuji A, Zhao ZS, Manser E, Biber J, Murer H (November 2003). "PDZK1: I. a major scaffolder in brush borders of proximal tubular cells". Kidney Int. 64 (5): 1733–45. doi: 10.1046/j.1523-1755.2003.00266.x . PMID   14531806.
  23. Mahon MJ, Donowitz M, Yun CC, Segre GV (June 2002). "Na(+)/H(+ ) exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling". Nature. 417 (6891): 858–61. Bibcode:2002Natur.417..858M. doi:10.1038/nature00816. PMID   12075354. S2CID   4379134.
  24. Pushkin A, Abuladze N, Newman D, Muronets V, Sassani P, Tatishchev S, Kurtz I (March 2003). "The COOH termini of NBC3 and the 56-kDa H+-ATPase subunit are PDZ motifs involved in their interaction". Am. J. Physiol., Cell Physiol. 284 (3): C667–73. doi:10.1152/ajpcell.00225.2002. PMID   12444018. S2CID   7070088.
  25. Mohler PJ, Kreda SM, Boucher RC, Sudol M, Stutts MJ, Milgram SL (November 1999). "Yes-associated protein 65 localizes p62(c-Yes) to the apical compartment of airway epithelia by association with EBP50". J. Cell Biol. 147 (4): 879–90. doi:10.1083/jcb.147.4.879. PMC   2156157 . PMID   10562288.
  26. Reczek D, Berryman M, Bretscher A (October 1997). "Identification of EBP50: A PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family". J. Cell Biol. 139 (1): 169–79. doi:10.1083/jcb.139.1.169. PMC   2139813 . PMID   9314537.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.