Tetramethyltin

Last updated
Tetramethyltin
Tetramethyltin.png
Tetramethyltin-3D-balls.png
Names
Preferred IUPAC name
Tetramethylstannane [1]
Other names
Tin tetramethyl
Identifiers
3D model (JSmol)
3647887
ChEBI
ChemSpider
ECHA InfoCard 100.008.941 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 209-833-6
1938
PubChem CID
RTECS number
  • WH8630000
UNII
UN number 3384
  • InChI=1S/4CH3.Sn/h4*1H3; Yes check.svgY
    Key: VXKWYPOMXBVZSJ-UHFFFAOYSA-N Yes check.svgY
  • C[Sn](C)(C)C
Properties
C4H12Sn
Molar mass 178.850 g·mol−1
AppearanceColorless liquid
Density 1.291 g cm−3
Melting point −54 °C (−65 °F; 219 K)
Boiling point 74 to 76 °C (165 to 169 °F; 347 to 349 K)
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-skull.svg GHS-pictogram-pollu.svg
Danger
H225, H300, H310, H330, H410
P210, P233, P240, P241, P242, P243, P260, P262, P264, P270, P271, P273, P280, P284, P301+P310, P302+P350, P303+P361+P353, P304+P340, P310, P320, P321, P322, P330, P361, P363, P370+P378, P391, P403+P233, P403+P235, P405, P501
NFPA 704 (fire diamond)
3
4
1
Flash point −12 °C (10 °F; 261 K)
Related compounds
Related tetraalkylstannanes
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Tetramethyltin is an organometallic compound with the formula (CH3)4Sn. This liquid, one of the simplest organotin compounds, is useful for transition-metal mediated conversion of acid chlorides to methyl ketones and aryl halides to aryl methyl ketones. It is volatile and toxic, so care should be taken when using it in the laboratory.

Contents

Synthesis and structure

Tetramethyltin is synthesized by reaction of the Grignard reagent methylmagnesium iodide, with tin tetrachloride, [2] which is synthesized by reacting tin metal with chlorine gas. [3]

4 CH3MgI + SnCl4 → (CH3)4Sn + 4 MgICl

In tetramethyltin, the metal surrounded by four methyl groups in a tetrahedral structure is a heavy analogue of neopentane.

Applications

Precursor to methyltin compounds

Tetramethyltin is a precursor to trimethyltin chloride (and related methyltin halides), which are precursors to other organotin compounds. These methyltin chlorides are prepared via the so-called Kocheshkov redistribution reaction. Thus, (CH3)4Sn and SnCl4 are allowed to react at temperatures between 100 °C and 200 °C to give (CH3)3SnCl as a product:

SnCl4 + 3 (CH3)4Sn → 4 (CH3)3SnCl

A second route to trimethyltin chloride utilizing tetramethyltin involves the reaction of mercury(II) chloride to react with (CH3)4Sn. [2]

4 HgCl2 + 4 (CH3)4Sn → 4 Me3SnCl + 4 MeHgCl

A variety of methyltin compounds are used as precursors for stabilizers in PVC. Di- and trimercaptotin compounds are used to inhibit the dehydrochlorination, which is the pathway for photolytic and thermal degradation of PVC. [3]

Surface functionalization

Tetramethyltin decomposes in the gas phase at about 277 °C; (CH3)4Sn vapor reacts with silica to give a (CH3)3Sn-grafted solid.

(CH3)4Sn + ≡SiOH → ≡SiOSn(CH3)3 + MeH

This reaction is also possible with other alkyl substituents. In a similar process, tetramethyltin has been used to functionalize certain zeolites at temperatures as low as −90 °C. [4]

Applications in organic synthesis

In organic synthesis, tetramethyltin undergoes palladium-catalyzed coupling reactions with acid chlorides to give methyl ketones: [5]

SnMe4 + RCOCl → RCOMe + Me3SnCl

Related Research Articles

In organic chemistry, an acyl chloride is an organic compound with the functional group −C(=O)Cl. Their formula is usually written R−COCl, where R is a side chain. They are reactive derivatives of carboxylic acids. A specific example of an acyl chloride is acetyl chloride, CH3COCl. Acyl chlorides are the most important subset of acyl halides.

In chemistry, halogenation is a chemical reaction that entails the introduction of one or more halogens into a compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. This kind of conversion is in fact so common that a comprehensive overview is challenging. This article mainly deals with halogenation using elemental halogens (F2, Cl2, Br2, I2). Halides are also commonly introduced using salts of the halides and halogen acids. Many specialized reagents exist for and introducing halogens into diverse substrates, e.g. thionyl chloride.

In organic chemistry, an aryl halide is an aromatic compound in which one or more hydrogen atoms, directly bonded to an aromatic ring are replaced by a halide. The haloarene are different from haloalkanes because they exhibit many differences in methods of preparation and properties. The most important members are the aryl chlorides, but the class of compounds is so broad that there are many derivatives and applications.

The Stille reaction is a chemical reaction widely used in organic synthesis. The reaction involves the coupling of two organic groups, one of which is carried as an organotin compound. A variety of organic electrophiles provide the other coupling partner. The Stille reaction is one of many palladium-catalyzed coupling reactions.

Tin(IV) chloride, also known as tin tetrachloride or stannic chloride, is an inorganic compound with the formula SnCl4. It is a colorless hygroscopic liquid, which fumes on contact with air. It is used as a precursor to other tin compounds. It was first discovered by Andreas Libavius (1550–1616) and was known as spiritus fumans libavii.

<span class="mw-page-title-main">Trimethylaluminium</span> Chemical compound

Trimethylaluminium is one of the simplest examples of an organoaluminium compound. Despite its name it has the formula Al2(CH3)6 (abbreviated as Al2Me6 or TMA), as it exists as a dimer. This colorless liquid is pyrophoric. It is an industrially important compound, closely related to triethylaluminium.

<span class="mw-page-title-main">Organotin chemistry</span> Branch of organic chemistry

Organotin chemistry is the scientific study of the synthesis and properties of organotin compounds or stannanes, which are organometallic compounds containing tin carbon bonds. The first organotin compound was diethyltin diiodide, discovered by Edward Frankland in 1849. The area grew rapidly in the 1900s, especially after the discovery of the Grignard reagents, which are useful for producing Sn–C bonds. The area remains rich with many applications in industry and continuing activity in the research laboratory.

The Hiyama coupling is a palladium-catalyzed cross-coupling reaction of organosilanes with organic halides used in organic chemistry to form carbon–carbon bonds. This reaction was discovered in 1988 by Tamejiro Hiyama and Yasuo Hatanaka as a method to form carbon-carbon bonds synthetically with chemo- and regioselectivity. The Hiyama coupling has been applied to the synthesis of various natural products.

<i>n</i>-Butyllithium Chemical compound

n-Butyllithium C4H9Li (abbreviated n-BuLi) is an organolithium reagent. It is widely used as a polymerization initiator in the production of elastomers such as polybutadiene or styrene-butadiene-styrene (SBS). Also, it is broadly employed as a strong base (superbase) in the synthesis of organic compounds as in the pharmaceutical industry.

Boron trichloride is the inorganic compound with the formula BCl3. This colorless gas is a reagent in organic synthesis. It is highly reactive toward water.

<span class="mw-page-title-main">Grignard reagent</span> Organometallic compounds used in organic synthesis

A Grignard reagent or Grignard compound is a chemical compound with the general formula R−Mg−X, where X is a halogen and R is an organic group, normally an alkyl or aryl. Two typical examples are methylmagnesium chloride Cl−Mg−CH3 and phenylmagnesium bromide (C6H5)−Mg−Br. They are a subclass of the organomagnesium compounds.

<span class="mw-page-title-main">Methyllithium</span> Chemical compound

Methyllithium is the simplest organolithium reagent with the empirical formula CH3Li. This s-block organometallic compound adopts an oligomeric structure both in solution and in the solid state. This highly reactive compound, invariably used in solution with an ether as the solvent, is a reagent in organic synthesis as well as organometallic chemistry. Operations involving methyllithium require anhydrous conditions, because the compound is highly reactive toward water. Oxygen and carbon dioxide are also incompatible with MeLi. Methyllithium is usually not prepared, but purchased as a solution in various ethers.

<span class="mw-page-title-main">Organozinc chemistry</span>

Organozinc chemistry is the study of the physical properties, synthesis, and reactions of organozinc compounds, which are organometallic compounds that contain carbon (C) to zinc (Zn) chemical bonds.

<span class="mw-page-title-main">Organolead chemistry</span>

Organolead chemistry is the scientific study of the synthesis and properties of organolead compounds, which are organometallic compounds containing a chemical bond between carbon and lead. The first organolead compound was hexaethyldilead (Pb2(C2H5)6), first synthesized in 1858. Sharing the same group with carbon, lead is tetravalent.

<span class="mw-page-title-main">Organocopper chemistry</span> Compound with carbon to copper bonds

Organocopper chemistry is the study of the physical properties, reactions, and synthesis of organocopper compounds, which are organometallic compounds containing a carbon to copper chemical bond. They are reagents in organic chemistry.

<span class="mw-page-title-main">Trimethyltin chloride</span> Chemical compound

Trimethyltin chloride is an organotin compound with the formula (CH3)3SnCl. It is a white solid that is highly toxic and malodorous. It is susceptible to hydrolysis.

Organomanganese chemistry is the chemistry of organometallic compounds containing a carbon to manganese chemical bond. In a 2009 review, Cahiez et al. argued that as manganese is cheap and benign, organomanganese compounds have potential as chemical reagents, although currently they are not widely used as such despite extensive research.

<span class="mw-page-title-main">Organobismuth chemistry</span>

Organobismuth chemistry is the chemistry of organometallic compounds containing a carbon to bismuth chemical bond. Applications are few. The main bismuth oxidation states are Bi(III) and Bi(V) as in all higher group 15 elements. The energy of a bond to carbon in this group decreases in the order P > As > Sb > Bi. The first reported use of bismuth in organic chemistry was in oxidation of alcohols by Frederick Challenger in 1934 (using Ph3Bi(OH)2). Knowledge about methylated species of bismuth in environmental and biological media is limited.

Organoplatinum chemistry is the chemistry of organometallic compounds containing a carbon to platinum chemical bond, and the study of platinum as a catalyst in organic reactions. Organoplatinum compounds exist in oxidation state 0 to IV, with oxidation state II most abundant. The general order in bond strength is Pt-C (sp) > Pt-O > Pt-N > Pt-C (sp3). Organoplatinum and organopalladium chemistry are similar, but organoplatinum compounds are more stable and therefore less useful as catalysts.

<span class="mw-page-title-main">Stannatrane</span>

A stannatrane is a tin-based atrane belonging to the larger class of organostannanes. Though the term stannatrane is often used to refer to the more commonly employed carbastannatrane, azastannatranes have also been synthesized. Stannatrane reagents offer highly selective methods for the incorporation of "R" substituents in complex molecules for late-stage diversification. These reagents differ from their tetraalkyl organostannane analogues in that there is no participation of dummy ligands in the transmetalation step, offering selective alkyl transfer in Stille Coupling reactions. These transmetalating agents are known to be air- and moisture-stable, as well as generally less toxic than their tetraalkyl counterparts.

References

  1. "Tetramethyltin | C4H12Sn". ChemSpider. Retrieved 2013-09-15.
  2. 1 2 Scott, W. J.; Jones, J. H.; Moretto, A. F. (2002). "Tetramethylstannane". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rt070. ISBN   0471936235.
  3. 1 2 Thoonen, S. H. L.; Deelman, B.; van Koten, G (2004). "Synthetic Aspects of Tetraorganotins and Organotin(IV) Halides". Journal of Organometallic Chemistry . 689 (13): 2145–2157. doi:10.1016/j.jorganchem.2004.03.027. hdl: 1874/6594 .
  4. Davies, A. G. (2008). "Tin Organometallics". In Robert H. Crabtree; D. Michael P. Mingos (eds.). Comprehensive Organometallic Chemistry III. Elsevier. pp. 809–883. doi:10.1016/B0-08-045047-4/00054-6. ISBN   9780080450476.
  5. Labadie, J. & Stille, J. (1983). "Mechanisms of the palladium-catalyzed couplings of acid chlorides with organotin reagents". J. Am. Chem. Soc. 105 (19): 6129. doi:10.1021/ja00357a026.