Tetrasodium iminodisuccinate

Last updated
Tetrasodium iminodisuccinate
Tetranatriumiminodisuccinat.svg
Names
IUPAC name
Tetrasodium N-(1,2-dicarboxylatoethyl)-ξ-aspartate(2−)
Systematic IUPAC name
Tetrasodium 2,2′-azanediyldibutanedioate
Identifiers
3D model (JSmol)
ECHA InfoCard 100.117.797 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 604-420-0
PubChem CID
UNII
  • InChI=1S/C8H11NO8.4Na/c10-5(11)1-3(7(14)15)9-4(8(16)17)2-6(12)13;;;;/h3-4,9H,1-2H2,(H,10,11)(H,12,13)(H,14,15)(H,16,17);;;;/q;4*+1/p-4
    Key: GYBINGQBXROMRS-UHFFFAOYSA-J
  • C(C(C(=O)[O-])NC(CC(=O)[O-])C(=O)[O-])C(=O)[O-].[Na+].[Na+].[Na+].[Na+]
Properties
C8H7NNa4O8
Molar mass 337.102 g·mol−1
Appearancecolorless crystals [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tetrasodium iminodisuccinate is a sodium salt of iminodisuccinic acid, also referred to as N-(1,2-dicarboxyethyl)aspartic acid. [2]

Contents

Preparation

Iminodisuccinic acid can be prepared by reacting maleic anhydride with ammonia and sodium hydroxide: [3]

IDHA-Na4-Synthese.svg

For the synthesis of tetrasodium iminodisuccinate, maleic anhydride is reacted with sodium hydroxide in water at elevated temperature. A concentrated disodium maleate solution is formed to which ammonia is added [4] at 90 to 145 °C, then excess water and ammonia is distilled off. An aqueous solution containing about 34% tetrasodium iminodisuccinate is obtained with yields of up to 98%. [5] Spray-drying can be used to obtain a mixture of solids consisting of> 65% tetrasodium iminodisuccinate salts (essentially the tetra sodium salts), <2% maleic acid sodium salts, <8% fumaric acid sodium salts, <2% malic acid sodium salts, <15% aspartic acid sodium salts, and >15% water. The by-products of the reaction do not affect the complexing capacity or biodegradability of the tetrasodium iminodisuccinate.

Composition of commercial products in % by weight
ProductIDS-Na4 saltNa2 fumarateNa2 aspartateNa2 malateNa2 maleatewater
Industrial cleaner [6] 72,15,610,6--8,9
Baypure CX 100/34 % [5] > 33,0< 2,5< 7,0< 0,5< 0,3< 59,0
Baypure CX 100 solid [5] > 65,0< 8,0< 15,0< 2,0< 2,0< 15,0
Baypure CX 100 solid G [5] > 78,0< 5,0< 15,0< 0,7< 0,5< 4,0

Properties

As a commercial product, tetrasodium iminodisuccinate is sold either as a white powder (solid mixture, produced by spray drying of the aqueous solution, Baypure® CX 100) or as granular material with a content of> 78% tetrasodium iminodisuccinate.

Tetrasodium iminodisuccinate is a chelating agent, forming complexes of moderate stability (10−16), which includes (as a pentadentate ligand) alkaline earth and polyvalent heavy metal ions with one molecule of water in an octahedral structure. [7] In 0.25% aqueous solution, a pH of 11.5 results for tetrasodium iminodisuccinate. The salt is stable for several hours in weakly acidic solution (pH> 4-7) even at 100 °C and for weeks in strongly alkaline solutions even at an elevated temperature (50 °C).

Tetrasodium iminodisuccinate is classified as readily biodegradable according to OECD methods (OECD 302 B, 100% after 28 days and OECD 301 E, 78% after 28 days). [5] As biodegradable alternatives from the class of widespread chelating agents, only nitrilotriacetic acid (NTA) is sufficiently biodegradable under certain conditions (which is suspected of being carcinogenic, though) and the chelating active amino acid derivatives β-alaninediacetic acid and methylglycine diacetic acid (Trilon M®).

Use

Iminodisuccinic acid has been distributed by Lanxess since 1998 under the trade name Baypure CX 100 as complexing agent. [3] It reacts with the calcium and magnesium ions in water and forms chelate complexes of medium stability. [5] This complexation prevents the formation of insoluble salts (deposits) and soaps (lime soaps) and thus improves the effect of detergents and dishwashing detergents, hand soaps and shampoos. As a result, the amount of conventional builders in solid detergents (carbonates, silicates, phosphates, citrates, zeolites) can be reduced or fully replaced. The calcium binding capacity for tetrasodium iminodisuccinate is approximately 230 mg CaCO3/g salt and therefore lies between the capacity of DTPA Na5 salt (210 mg CaCO3 Na salt) and EDTA Na4 salt (280 mg CaCO3/g Na-salt).

Also most other applications of tetrasodium iminodisuccinate Na salt are based on the complexation of alkaline earth and heavy metal ions e. g. in industrial cleaners for the removal of biofilms and limescale, cosmetics, in electroplating, in construction (retardation), textile (protection against graying) and paper. When tetrasodium iminodisuccinate is used in solid detergent formulations instead of the common phosphonates, it inhibits the heavy metal ion catalyzed decomposition of hydrogen peroxide in bleach-containing wash liquors.

Complexes of tetrasodium iminodisuccinate with Fe3+, Cu2+, Zn2+ and Mn2+ ions are used as micronutrients, as they are providing important trace elements for plants in readily absorbable form; both granulated as soil fertilizer and dissolved as foliar spray. The so far commonly in plant protection applied complexing agents such as EDTA, DTPA (diethylenetriamine pentaacetic acid), EDDHA (ethylenediamine dihydroxyphenylacetic acid) or HBED (N,N'-di(2-hydroxybenzyl)ethylenediamine-N, N'-diacetic acid) are difficult to virtually non-biodegradable. In contrast, IDHA trace element complexes offer an interesting alternative. [7]

Stereoisomerism

The preparation from the achiral starting materials provides a mixture of three epimers: [8] (R,R)-iminodisuccinate, (R,S)-iminodisuccinate, and (S,S)-iminodisuccinate. The two meso compounds [R,S] and [S,R] are identical. The enzymatic degradation in the first two cases produces the compounds D-aspartic acid and fumaric acid, and in the third case produces L-aspartic acid and fumaric acid, which are metabolized further.

Related Research Articles

<span class="mw-page-title-main">Base (chemistry)</span> Type of chemical substance

In chemistry, there are three definitions in common use of the word "base": Arrhenius bases, Brønsted bases, and Lewis bases. All definitions agree that bases are substances that react with acids, as originally proposed by G.-F. Rouelle in the mid-18th century.

<span class="mw-page-title-main">Sodium carbonate</span> Chemical compound

Sodium carbonate is the inorganic compound with the formula Na2CO3 and its various hydrates. All forms are white, odourless, water-soluble salts that yield alkaline solutions in water. Historically, it was extracted from the ashes of plants grown in sodium-rich soils, and because the ashes of these sodium-rich plants were noticeably different from ashes of wood, sodium carbonate became known as "soda ash". It is produced in large quantities from sodium chloride and limestone by the Solvay process, as well as by carbonating sodium hydroxide which is made using the Chlor-alkali process.

Chelation is a type of bonding of ions and molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate ligand and a single central metal atom. These ligands are called chelants, chelators, chelating agents, or sequestering agents. They are usually organic compounds, but this is not a necessity.

<span class="mw-page-title-main">Ethylenediaminetetraacetic acid</span> Chemical compound

Ethylenediaminetetraacetic acid (EDTA), also called edetic acid after its own abbreviation, is an aminopolycarboxylic acid with the formula [CH2N(CH2CO2H)2]2. This white, water-insoluble solid is widely used to bind to iron (Fe2+/Fe3+) and calcium ions (Ca2+), forming water-soluble complexes even at neutral pH. It is thus used to dissolve Fe- and Ca-containing scale as well as to deliver iron ions under conditions where its oxides are insoluble. EDTA is available as several salts, notably disodium EDTA, sodium calcium edetate, and tetrasodium EDTA, but these all function similarly.

<span class="mw-page-title-main">Water softening</span> Removing positive ions from hard water

Water softening is the removal of calcium, magnesium, and certain other metal cations in hard water. The resulting soft water requires less soap for the same cleaning effort, as soap is not wasted bonding with calcium ions. Soft water also extends the lifetime of plumbing by reducing or eliminating scale build-up in pipes and fittings. Water softening is usually achieved using lime softening or ion-exchange resins, but is increasingly being accomplished using nanofiltration or reverse osmosis membranes.

<span class="mw-page-title-main">Sodium sulfide</span> Chemical compound

Sodium sulfide is a chemical compound with the formula Na2S, or more commonly its hydrate Na2S·9H2O. Both the anhydrous and the hydrated salts in pure crystalline form are colorless solids, although technical grades of sodium sulfide are generally yellow to brick red owing to the presence of polysulfides and commonly supplied as a crystalline mass, in flake form, or as a fused solid. They are water-soluble, giving strongly alkaline solutions. When exposed to moist air, Na2S and its hydrates emit hydrogen sulfide, an extremely toxic, flammable and corrosive gas which smells like rotten eggs.

Ethylenediamine (abbreviated as en when a ligand) is the organic compound with the formula C2H4(NH2)2. This colorless liquid with an ammonia-like odor is a basic amine. It is a widely used building block in chemical synthesis, with approximately 500,000 tonnes produced in 1998. Ethylenediamine is the first member of the so-called polyethylene amines.

<span class="mw-page-title-main">Nitrilotriacetic acid</span> Chemical compound

Nitrilotriacetic acid (NTA) is the aminopolycarboxylic acid with the formula N(CH2CO2H)3. It is a colourless solid. Its conjugate base nitrilotriacetate is used as a chelating agent for Ca2+, Co2+, Cu2+, and Fe3+.

<span class="mw-page-title-main">Pentetic acid</span> DTPA: aminopolycarboxylic acid

Pentetic acid or diethylenetriaminepentaacetic acid (DTPA) is an aminopolycarboxylic acid consisting of a diethylenetriamine backbone with five carboxymethyl groups. The molecule can be viewed as an expanded version of EDTA and is used similarly. It is a white solid with limited solubility in water.

<span class="mw-page-title-main">EDDS</span> Chemical compound

Ethylenediamine-N,N'-disuccinic acid (EDDS) is an aminopolycarboxylic acid. It is a colourless solid that is used as chelating agent that may offer a biodegradable alternative to EDTA, which is currently used on a large scale in numerous applications.

<span class="mw-page-title-main">Alkali soil</span> Soil type with pH > 8.5

Alkali, or Alkaline, soils are clay soils with high pH, a poor soil structure and a low infiltration capacity. Often they have a hard calcareous layer at 0.5 to 1 metre depth. Alkali soils owe their unfavorable physico-chemical properties mainly to the dominating presence of sodium carbonate, which causes the soil to swell and difficult to clarify/settle. They derive their name from the alkali metal group of elements, to which sodium belongs, and which can induce basicity. Sometimes these soils are also referred to as alkaline sodic soils.
Alkaline soils are basic, but not all basic soils are alkaline.

<span class="mw-page-title-main">Polyaspartic acid</span> Chemical compound

Polyaspartic acid (PASA) is a biodegradable, water-soluble condensation polymer based on the amino acid aspartic acid. It is a biodegradable replacement for water softeners and related applications. PASA can be chemically crosslinked with a wide variety of methods to yield PASA hydrogels. The resulting hydrogels are pH-sensitive such that under acidic conditions, they shrink, while the swelling capacity increases under alkaline conditions.

The per­iodato­nickelates are a series of anions and salts of nickel complexed to the periodate anion. The most important of these salts are the di­periodato­nickelates, in which nickel exhibits the +4 oxidation state: these are powerful oxidising agents, capable of oxidising bromate to perbromate.

<span class="mw-page-title-main">2,2',2''-Nitrilotriacetonitrile</span> Chemical compound

Nitrilotriacetonitrile (NTAN) is a precursor for nitrilotriacetic acid, for tris(2-aminoethyl)amine and for the epoxy resin crosslinker aminoethylpiperazine.

<span class="mw-page-title-main">Ferric EDTA</span> Chemical compound

Ferric EDTA is the coordination complex formed from ferric ions and EDTA. EDTA has a high affinity for ferric ions. It gives yellowish aqueous solutions.

Polysuccinimide (PSI), also known as polyanhydroaspartic acid or polyaspartimide, is formed during the thermal polycondensation of aspartic acid and is the simplest polyimide. Polysuccinimide is insoluble in water, but soluble in some aprotic dipolar solvents. Its reactive nature makes polysuccinimide a versatile starting material for functional polymers made from renewable resources.

<i>N</i>-(2-Carboxyethyl)iminodiacetic acid Chemical compound

N-(2-Carboxyethyl)iminodiacetic acid or β-ADA(β-alanine diacetate) is an organic compound with the formula HO2CCH2CH2N(CH2CO2H)2. It is a white solid. The compound is classified as an aminocarboxylic acid, formally a derivative of glycine.

<span class="mw-page-title-main">Trisodium dicarboxymethyl alaninate</span> Chemical compound

Trisodium N-(1-carboxylatoethyl)iminodiacetate, methylglycinediacetic acid trisodium salt (MGDA-Na3) or trisodium α-DL-alanine diacetate (α-ADA), is the trisodium anion of N-(1-carboxyethyl)iminodiacetic acid and a tetradentate complexing agent. It forms stable 1:1 chelate complexes with cations having a charge number of at least +2, e.g. the "hard water forming" cations Ca2+ or Mg2+. α-ADA is distinguished from the isomeric β-alaninediacetic acid by better biodegradability and therefore improved environmental compatibility.

Chelated platinum is an ionized form of platinum that forms two or more bonds with a counter ion. Some platinum chelates are claimed to have antimicrobial activity.

Cobalt compounds are chemical compounds formed by cobalt with other elements.

References

  1. Nu-Calgon: Safety data sheet [ dead link ]
  2. Van Iperen International: IDHA-chelates
  3. 1 2 Dorota Kołodyńska (2011), Robert Y. Ning (ed.), "Chelating Agents of a New Generation as an Alternative to Conventional Chelators for Heavy Metal Ions Removal from Different Waste Waters", Expanding Issues in Desalination, Hier: S. 344 (in German), InTech, pp. 339–370, doi: 10.5772/21180 , ISBN   978-953-307-624-9
  4. US 6107518,Torsten Groth, Winfried Joentgen, Paul Wagner, Frank Dobert, Eckhard Wenderoth, Thomas Roick,"Preparation and use of iminodisuccinic acid salts",issued 2000-08-22, assigned to Bayer AG
  5. 1 2 3 4 5 6 Lanxess AG, General Product Information: Baypure
  6. nicnas.gov.au: Aspartic acid, N-(1,2-dicarboxyethyl)-, tetrasodium salt Archived 2014-02-12 at the Wayback Machine , August 2002.
  7. 1 2 ADOB: Biodegradable chelates Archived 2014-05-12 at the Wayback Machine
  8. E. Sanchez et al.: Iminodisuccinate Pathway Map, Manchester College, April 17, 2013