Maleic anhydride

Last updated
Maleic anhydride [1]
Maleic anhydride Maleic anhydride (vertical).svg
Maleic anhydride
Maleic anhydride-3d.png
Sample of Maleic anhydride.jpg
Names
Preferred IUPAC name
Furan-2,5-dione [2]
Other names
Maleic anhydride [2]
cis-Butenedioic anhydride
2,5-Furanedione
Maleic acid anhydride
Toxilic anhydride
Identifiers
3D model (JSmol)
106909
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.247 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 203-571-6
2728
PubChem CID
RTECS number
  • ON3675000
UNII
UN number 2215
  • InChI=1S/C4H2O3/c5-3-1-2-4(6)7-3/h1-2H Yes check.svgY
    Key: FPYJFEHAWHCUMM-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C4H2O3/c5-3-1-2-4(6)7-3/h1-2H
    Key: FPYJFEHAWHCUMM-UHFFFAOYAP
  • C1=CC(=O)OC1=O
Properties
C4H2O3
Molar mass 98.057 g·mol−1
AppearanceWhite crystals or needles [3]
Odor irritating, choking [3]
Density 1.48 g/cm3
Melting point 52.8 °C (127.0 °F; 325.9 K)
Boiling point 202 °C (396 °F; 475 K)
Reacts
Vapor pressure 0.2 mmHg (20°C) [3]
-35.8·10−6 cm3/mol
Hazards
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg
Danger
H302, H314, H317, H334, H372
P260, P261, P264, P270, P272, P280, P285, P301+P312, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P304+P341, P305+P351+P338, P310, P314, P321, P330, P333+P313, P342+P311, P363, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
3
1
1
Flash point 102 °C (216 °F; 375 K)
Explosive limits 1.4%-7.1% [3]
Lethal dose or concentration (LD, LC):
465 mg/kg (oral, mouse)
850 mg/kg (oral, rat)
875 mg/kg (oral, rabbit)
390 mg/kg (oral, guinea pig)
400 mg/kg (oral, rat) [4]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 1 mg/m3 (0.25 ppm) [3]
REL (Recommended)
TWA 1 mg/m3 (0.25 ppm) [3]
IDLH (Immediate danger)
10 mg/m3 [3]
Safety data sheet (SDS) MSDS at J. T. Baker
Related compounds
Succinic anhydride
Related compounds
Maleic acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Maleic anhydride is an organic compound with the formula C2H2(CO)2O. It is the acid anhydride of maleic acid. It is a colorless or white solid with an acrid odor. It is produced industrially on a large scale for applications in coatings and polymers. [5]

Contents

Production

Maleic anhydride is produced by vapor-phase oxidation of n-butane. The overall process converts the methyl groups to carboxylate and dehydrogenates the backbone. The selectivity of the process reflects the robustness of maleic anhydride, with its conjugated double-bond system. Traditionally maleic anhydride was produced by the oxidation of benzene or other aromatic compounds. As of 2006, only a few smaller plants continue to use benzene.

In both cases, benzene and butane are fed into a stream of hot air, and the mixture is passed through a catalyst bed at high temperature. The ratio of air to hydrocarbon is controlled to prevent the mixture from igniting. Vanadium pentoxide and molybdenum trioxide are the catalysts used for the benzene route, whereas vanadium phosphate is used for the butane route: [5]

C4H10 + 3.5 O2 → C4H2O3 + 4 H2O ∆H = −1236 kJ/mol

The main competing process entails full combustion of the butane, a conversion that is twice as exothermic as the partial oxidation.

The traditional method using benzene became uneconomical due to the high and still rising benzene prices and by complying with the regulations of benzene emissions. In addition, in the production of maleic anhydride (4 C-atoms) a third of the original carbon atoms is lost as carbon dioxide when using benzene (6 carbon atoms). The modern catalytic processes start from a 4-carbon molecule and only attaches oxygen and removes water; the 4-C-base body of the molecule remains intact. Overall, the newer method is therefore more material efficient. [6]

Parallels exist with the production of phthalic anhydride: While older methods use naphthalene, modern methods use o-xylene as feedstock.

Reactions

The chemistry of maleic anhydride is very rich, reflecting its ready availability and bifunctional reactivity. It hydrolyzes, producing maleic acid, cis-HOOCCH=CHCOOH. With alcohols, the half-ester is generated, e.g., cis-HOOCCH=CHCOOCH3.

Maleic anhydride is a classic substrate for Diels-Alder reactions. [7] It was used for work in 1928, on the reaction between maleic anhydride and 1,3-butadiene, for which Otto Paul Hermann Diels and Kurt Alder were awarded the Nobel Prize in 1950. It is through this reaction that maleic anhydride is converted to many pesticides and pharmaceuticals. Their 1928 patent also provided many other examples of reactions involving maleic anhydride, such as the reaction with cyclopentadiene to form nadic anhydride. [8]

Maleic anhydride Diel.Alder reaction with butadiene.svg

Michael reaction of maleic anhydride with active methylene or methine compounds such as malonate or acetoacetate esters in the presence of sodium acetate catalyst. These intermediates were subsequently used for the generation of the Krebs cycle intermediates aconitic and isocitric acids. [9]

Maleic anhydride dimerizes in a photochemical reaction to form cyclobutane tetracarboxylic dianhydride (CBTA). This compound is used in the production of polyimides and as an alignment film for liquid crystal displays. [10]

MaleicAnhydrideDimerization.svg

It is also a ligand for low-valent metal complexes, examples being Pt(PPh3)2(MA) and Fe(CO)4(MA).

On account of its cycle of 4 π electrons in an array of 5 atoms with p orbitals, maleic anhydride was long thought to exhibit antiaromaticity. However, a thermochemical study concluded that only 8 kJ/mol of destabilization energy can be ascribed to this effect, making it weakly antiaromatic at best. [11]

Uses

Maleic anhydride has many applications. [5]

Plastics & resins

Around 50% of world maleic anhydride output is used in the manufacture of unsaturated polyester resins (UPR). Chopped glass fibers are added to UPR to produce fiberglass reinforced plastics that are used in a wide range of applications such as pleasure boats, bathroom fixtures, automobiles, tanks and pipes.

Maleic anhydride is hydrogenated to 1,4-butanediol (BDO), used in the production of thermoplastic polyurethanes, elastane/Spandex fibers, polybutylene terephthalate (PBT) resins and many other products.

Curing agents

Diels-Alder reaction of maleic anhydride and butadiene and isoprene gives the respective tetrahydrophthalic anhydrides which can be hydrogenated to the corresponding hexahydrophthalic anhydrides. These species are used as curing agents in epoxy resins. Another market for maleic anhydride is lubricating oil additives, which are used in gasoline and diesel engine crankcase oils as dispersants and corrosion inhibitors. Changes in lubricant specifications and more efficient engines have had a negative effect on the demand for lubricating oil additives, giving flat growth prospects for maleic anhydride in this application.

Others

A number of smaller applications exist for maleic anhydride. Personal care products consuming maleic anhydride include hair sprays, adhesives and floor polishes. Maleic anhydride is also a precursor to compounds used for water treatment detergents, insecticides and fungicides, pharmaceuticals, and other copolymers.

The maleic anhydride group occurs in several natural products, some of which show promising therapeutic or pesticidal activity. [12]

Major producers

CompanyLocationCapacity (KMT/Year)
Yongsan Chemicals, Inc.South Korea38
Bartek Ingredients Inc.Canada28
Sasol-HuntsmanGermany105
DSM NVThe Netherlands100
INEOSUSA50
Huntsman CorporationUSA155
Huntsman Performance ProductsUSA100
Lanxess CorporationUSA75
Lonza Group AGSwitzerland100
AOC MaterialsUSA55
Mitsubishi Chemical CorporationJapan32
Mitsui Chemicals, IncJapan33
Mitsui Chemicals Polyurethanes, Inc.Japan100
Nippon Shokubai Co., LtdJapan35
NOF CorporationJapan12
Polynt SpAItaly96
Mysore Petro Chemicals Ltd.India15

Source: Kirk & Othmer

Solid State Chemicals, Ltd. started production of solid maleic anhydride pastilles in the USA in 2014.

World Maleic Anhydride Capacity By Region
Data in: kilotonnes per annum

Region200220122015 (KMT/Year)
North America235311370
South & Central America444146
Western Europe168456307
Central & Eastern Europe645860
Asia3154831864
Africa101014
Total83613592771

Source: Kirk & Othmer [ full citation needed ]

Packing and transport

Liquid maleic anhydride is available in road tankers and/or tank-containers which are made of stainless steel, which are insulated and provided with heating systems to maintain the temperature of 65-75 °C. Tank cars must be approved for the transport of molten maleic anhydride.

Liquid/molten maleic anhydride is a dangerous material in accordance with RID/ADR.

Solid maleic anhydride pellets are transported by trucks. Packaging is generally in 25 kg polyethylene bags.

Effects on human health and the environment

This compound poses relatively low-risk environmental hazards, an important feature for some applications. In humans, exposure to maleic anhydride may cause irritation to the respiratory tract, eyes, exposed mucosa, and skin. Maleic anhydride is also a skin and respiratory sensitizer. [13]

Maleic anhydride is a low hazard profile chemical. Maleic anhydride rapidly hydrolyzes to form maleic acid in the presence of water and hence environmental exposures to maleic anhydride itself are unlikely. Maleic acid is biodegradable under aerobic conditions in sewage sludge as well as in soil and water.

Food starch for use in night markets sold from a supplier in Tainan city, Taiwan, were found to contain maleic anhydride in December 2013. The supplier was investigated regarding the 300 tons of tainted starch; an earlier inspection in November had found 32 tons. [14]

Related Research Articles

Cyclopentadiene is an organic compound with the formula C5H6. It is often abbreviated CpH because the cyclopentadienyl anion is abbreviated Cp.

<span class="mw-page-title-main">Naphthalene</span> Chemical compound

Naphthalene is an organic compound with formula C
10
H
8
. It is the simplest polycyclic aromatic hydrocarbon, and is a white crystalline solid with a characteristic odor that is detectable at concentrations as low as 0.08 ppm by mass. As an aromatic hydrocarbon, naphthalene's structure consists of a fused pair of benzene rings. It is the main ingredient of traditional mothballs.

Acrylonitrile is an organic compound with the formula CH2CHCN and the structure H2C=CH−C≡N. It is a colorless, volatile liquid. It has a pungent odor of garlic or onions. Its molecular structure consists of a vinyl group linked to a nitrile. It is an important monomer for the manufacture of useful plastics such as polyacrylonitrile. It is reactive and toxic at low doses.

<span class="mw-page-title-main">Phthalic anhydride</span> Chemical compound

Phthalic anhydride is the organic compound with the formula C6H4(CO)2O. It is the anhydride of phthalic acid. Phthalic anhydride is a principal commercial form of phthalic acid. It was the first anhydride of a dicarboxylic acid to be used commercially. This white solid is an important industrial chemical, especially for the large-scale production of plasticizers for plastics. In 2000, the worldwide production volume was estimated to be about 3 million tonnes per year.

<span class="mw-page-title-main">Butadiene</span> Chemical compound

1,3-Butadiene is the organic compound with the formula CH2=CH-CH=CH2. It is a colorless gas that is easily condensed to a liquid. It is important industrially as a precursor to synthetic rubber. The molecule can be viewed as the union of two vinyl groups. It is the simplest conjugated diene.

Furan is a heterocyclic organic compound, consisting of a five-membered aromatic ring with four carbon atoms and one oxygen atom. Chemical compounds containing such rings are also referred to as furans.

<span class="mw-page-title-main">Pentane</span> Alkane with 5 carbon atoms

Pentane is an organic compound with the formula C5H12—that is, an alkane with five carbon atoms. The term may refer to any of three structural isomers, or to a mixture of them: in the IUPAC nomenclature, however, pentane means exclusively the n-pentane isomer, in which case pentanes refers to a mixture of them; the other two are called isopentane (methylbutane) and neopentane (dimethylpropane). Cyclopentane is not an isomer of pentane because it has only 10 hydrogen atoms where pentane has 12.

<span class="mw-page-title-main">Acrylic acid</span> Chemical compound

Acrylic acid (IUPAC: propenoic acid) is an organic compound with the formula CH2=CHCOOH. It is the simplest unsaturated carboxylic acid, consisting of a vinyl group connected directly to a carboxylic acid terminus. This colorless liquid has a characteristic acrid or tart smell. It is miscible with water, alcohols, ethers, and chloroform. More than a million tons are produced annually.

Cyclohexene is a hydrocarbon with the formula C6H10. This cycloalkene is a colorless liquid with a sharp smell. It is an intermediate in various industrial processes. Cyclohexene is not very stable upon long term storage with exposure to light and air because it forms peroxides.

<span class="mw-page-title-main">Acetic anhydride</span> Organic compound with formula (CH₃CO)₂O

Acetic anhydride, or ethanoic anhydride, is the chemical compound with the formula (CH3CO)2O. Commonly abbreviated Ac2O, it is the simplest isolable anhydride of a carboxylic acid and is widely used as a reagent in organic synthesis. It is a colorless liquid that smells strongly of acetic acid, which is formed by its reaction with moisture in the air.

<span class="mw-page-title-main">Organic acid anhydride</span> Any chemical compound having two acyl groups bonded to the same oxygen atom

An organic acid anhydride is an acid anhydride that is also an organic compound. An acid anhydride is a compound that has two acyl groups bonded to the same oxygen atom. A common type of organic acid anhydride is a carboxylic anhydride, where the parent acid is a carboxylic acid, the formula of the anhydride being (RC(O))2O. Symmetrical acid anhydrides of this type are named by replacing the word acid in the name of the parent carboxylic acid by the word anhydride. Thus, (CH3CO)2O is called acetic anhydride.Mixed (or unsymmetrical) acid anhydrides, such as acetic formic anhydride (see below), are known, whereby reaction occurs between two different carboxylic acids. Nomenclature of unsymmetrical acid anhydrides list the names of both of the reacted carboxylic acids before the word "anhydride" (for example, the dehydration reaction between benzoic acid and propanoic acid would yield "benzoic propanoic anhydride").

<span class="mw-page-title-main">Vanadium(V) oxide</span> Precursor to vanadium alloys and industrial catalyst

Vanadium(V) oxide (vanadia) is the inorganic compound with the formula V2O5. Commonly known as vanadium pentoxide, it is a brown/yellow solid, although when freshly precipitated from aqueous solution, its colour is deep orange. Because of its high oxidation state, it is both an amphoteric oxide and an oxidizing agent. From the industrial perspective, it is the most important compound of vanadium, being the principal precursor to alloys of vanadium and is a widely used industrial catalyst.

<span class="mw-page-title-main">Maleic acid</span> Dicarboxylic acid

Maleic acid or cis-butenedioic acid is an organic compound that is a dicarboxylic acid, a molecule with two carboxyl groups. Its chemical formula is HO2CCH=CHCO2H. Maleic acid is the cis-isomer of butenedioic acid, whereas fumaric acid is the trans-isomer. It is mainly used as a precursor to fumaric acid, and relative to its parent maleic anhydride, which has many applications..

<span class="mw-page-title-main">1,4-Benzoquinone</span> Chemical compound

1,4-Benzoquinone, commonly known as para-quinone, is a chemical compound with the formula C6H4O2. In a pure state, it forms bright-yellow crystals with a characteristic irritating odor, resembling that of chlorine, bleach, and hot plastic or formaldehyde. This six-membered ring compound is the oxidized derivative of 1,4-hydroquinone. The molecule is multifunctional: it exhibits properties of a ketone, being able to form oximes; an oxidant, forming the dihydroxy derivative; and an alkene, undergoing addition reactions, especially those typical for α,β-unsaturated ketones. 1,4-Benzoquinone is sensitive toward both strong mineral acids and alkali, which cause condensation and decomposition of the compound.

Cycloheptatriene (CHT) is an organic compound with the formula C7H8. It is a closed ring of seven carbon atoms joined by three double bonds (as the name implies) and four single bonds. This colourless liquid has been of recurring theoretical interest in organic chemistry. It is a ligand in organometallic chemistry and a building block in organic synthesis. Cycloheptatriene is not aromatic, as reflected by the nonplanarity of the methylene bridge (-CH2-) with respect to the other atoms; however the related tropylium cation is.

<span class="mw-page-title-main">1,2-Dichlorobenzene</span> Chemical compound

1,2-Dichlorobenzene, or orthodichlorobenzene (ODCB), is an organic compound with the formula C6H4Cl2. This colourless liquid is poorly soluble in water but miscible with most organic solvents. It is a derivative of benzene, consisting of two adjacent chlorine atoms.

<span class="mw-page-title-main">Sulfolene</span> Chemical compound

Sulfolene, or butadiene sulfone is a cyclic organic chemical with a sulfone functional group. It is a white, odorless, crystalline, indefinitely storable solid, which dissolves in water and many organic solvents. The compound is used as a source of butadiene.

<span class="mw-page-title-main">Hexachlorobutadiene</span> Chemical compound

Hexachlorobutadiene, (often abbreviated as "HCBD") Cl2C=C(Cl)C(Cl)=CCl2, is a colorless liquid at room temperature that has an odor similar to that of turpentine. It is a chlorinated aliphatic diene with niche applications but is most commonly used as a solvent for other chlorine-containing compounds. Structurally, it has a 1,3-butadiene core, but fully substituted with chlorine atoms.

<span class="mw-page-title-main">Copper(II) tetrafluoroborate</span> Chemical compound

Copper(II) tetrafluoroborate is any inorganic compound with the formula Cu(H2O)x(BF4)2. As usually encountered, it is assumed to be the hexahydrate (x = 6), but this salt can be partially dehydrated to the tetrahydrate. Regardless, these compounds are aquo complexes of copper in its +2 oxidation state, with two weakly coordinating tetrafluoroborate anions.

<i>m</i>-Xylylenediamine Chemical compound

m-Xylylenediamine is an organic compound with the formula C6H4(CH2NH2)2. A colorless oily liquid, it is produced by hydrogenation of isophthalonitrile.

References

  1. Merck Index , 11th Edition, 5586.
  2. 1 2 "Front Matter". Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 835. doi:10.1039/9781849733069-FP001. ISBN   978-0-85404-182-4.
  3. 1 2 3 4 5 6 7 NIOSH Pocket Guide to Chemical Hazards. "#0376". National Institute for Occupational Safety and Health (NIOSH).
  4. "Maleic anhydride". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  5. 1 2 3 Kurt Lohbeck; Herbert Haferkorn; Werner Fuhrmann; Norbert Fedtke. "Maleic and Fumaric Acids". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a16_053.
  6. Bertram Philipp, Peter Stevens: Grundzüge der Industriellen Chemie, VCH Verlagsgesellschaft mbH, 1987, S. 179, ISBN   3-527-25991-0.
  7. Samuel Danishefsky; Takeshi Kitahara & Paul F. Schuda (1983). "Preparation and Diels-Alder Reaction of a Highly Nucleophilic Diene: trans-1-Methoxyl-3-Trimethylsiloxy-1,3-Butadiene and 5β-Methoxycyclohexan-1-one-3β,4β-Dicarboxylic acid Andhydride". Org. Synth. 61: 147. doi:10.1002/0471264180.os061.30.
  8. United States US1944731A, Otto Diels & Kurt Alder,"Organic compound having hydrogenated ring systems and process of preparing it",published January 23, 1934
  9. US 4146543 E.Gutierrez
  10. Horie, T.; Sumino, M.; Tanaka, T.; Matsushita, Y.; Ichimura, T.; Yoshida, J. I. (2010). "Photodimerization of Maleic Anhydride in a Microreactor Without Clogging". Organic Process Research & Development. 14 (2): 100128104701019. doi:10.1021/op900306z.
  11. Roux, María Victoria; Jiménez, Pilar; Martín-Luengo, Maria Ángeles; Dávalos, Juan Z.; Sun, Zhiyuan; Hosmane, Ramachandra S.; Liebman, Joel F. (May 1997). "The Elusive Antiaromaticity of Maleimides and Maleic Anhydride: Enthalpies of Formation ofN-Methylmaleimide,N-Methylsuccinimide,N-Methylphthalimide, andN-Benzoyl-N-methylbenzamide". The Journal of Organic Chemistry. 62 (9): 2732–2737. doi:10.1021/jo9621985. ISSN   0022-3263. PMID   11671632.
  12. Chen, Xiaolong; Zheng, Yuguo; Shen, Yinchu (2007). "Natural Products with Maleic Anhydride Structure: Nonadrides, Tautomycin, Chaetomellic Anhydride, and Other Compounds". Chemical Reviews. 107 (5): 1777–1830. doi:10.1021/cr050029r. PMID   17439289.
  13. "Substance Evaluation Report: Maleic anhydride" (PDF). Environment Agency Austria. Archived from the original (PDF) on 2014-10-18. Retrieved 2014-10-13.
  14. "Tainted starch found in Tainan yet again". Want China Times. 2013-12-19. Archived from the original on 2013-12-19. Retrieved 2013-12-19.