Thiamine transporter 1

Last updated
SLC19A2
Identifiers
Aliases SLC19A2 , TC1, THMD1, THT1, THTR1, TRMA, solute carrier family 19 member 2
External IDs OMIM: 603941 MGI: 1928761 HomoloGene: 38258 GeneCards: SLC19A2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_006996
NM_001319667

NM_001276455
NM_054087

RefSeq (protein)

NP_001306596
NP_008927

NP_001263384
NP_473428

Location (UCSC) Chr 1: 169.46 – 169.49 Mb Chr 1: 164.08 – 164.09 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Thiamine transporter 1, also known as thiamine carrier 1 (TC1) or solute carrier family 19 member 2 (SLC19A2) is a protein that in humans is encoded by the SLC19A2 gene. [5] SLC19A2 is a thiamine transporter. Mutations in this gene cause thiamine-responsive megaloblastic anemia syndrome (TRMA), which is an autosomal recessive disorder characterized by diabetes mellitus, megaloblastic anemia and sensorineural deafness. [6] [7] [8]

Contents

Structure

The SLC19A2 gene is located on the q arm of chromosome 1 in position 24.2 and spans 22,062 base pairs. [7] The gene produces a 55.4 kDa protein composed of 497 amino acids. [9] [10] In the encoded protein (TC1), a multi-pass membrane protein located in the cell membrane, the N-terminus and C-terminus face the cytosol. [11] [12] This gene has 6 exons while the protein has 12 putative transmembrane domains, with 3 phosphorylation sites in putative intracellular domains, 2 N-glycolysation sites in putative extracellular domains, and a 17-amino acid long G protein-coupled receptor signature sequence. The thiamine transporter protein encoded by SLC19A2 has a 40% shared amino acid identity with the folate transporter SLC19A1. [13] The N-terminal domain and the sequence between the C-terminal domain and sixth transmembrane domain are required for proper localization of this protein to the cell membrane. [14] [15]

Function

The encoded protein is a high-affinity transporter specific to the intake of thiamine. [11] [12] Thiamine transport is not inhibited by other organic cations nor affected by sodium ion concentration; it is stimulated by a proton gradient directed outward, with an optimal pH between 8.0 and 8.5. [13] TC1 is transported to the cell membrane by intracellular vesicles via microtubules. [14] [15]

Clinical significance

Mutations in the SLC19A2 gene can cause thiamine-responsive megaloblastic anemia syndrome (TRMA), which is an autosomal recessive disease characterized by megaloblastic anemia, diabetes mellitus, and sensorineural deafness. Onset is typically between infancy and adolescence, but all of the cardinal findings are often not present initially. The anemia, and sometimes the diabetes, improves with high doses of thiamine. Other more variable features include optic atrophy, congenital heart defects, short stature, and stroke. [11] [12]

A 3.8 kb transcript is expressed variably in most tissues, highest in skeletal and cardiac muscle, followed by medium expression placenta, heart, liver, kidney cells and low expression in lung cells. In melanocytic cells SLC19A2 gene expression may be regulated by MITF. [16]

Interactions

This protein interacts with CERS2. [17]

Related Research Articles

<span class="mw-page-title-main">Megaloblastic anemia</span> Medical condition

Megaloblastic anemia is a type of macrocytic anemia. An anemia is a red blood cell defect that can lead to an undersupply of oxygen. Megaloblastic anemia results from inhibition of DNA synthesis during red blood cell production. When DNA synthesis is impaired, the cell cycle cannot progress from the G2 growth stage to the mitosis (M) stage. This leads to continuing cell growth without division, which presents as macrocytosis. Megaloblastic anemia has a rather slow onset, especially when compared to that of other anemias. The defect in red cell DNA synthesis is most often due to hypovitaminosis, specifically vitamin B12 deficiency or folate deficiency. Loss of micronutrients may also be a cause.

Diamond–Blackfan anemia (DBA) is a congenital erythroid aplasia that usually presents in infancy. DBA causes low red blood cell counts (anemia), without substantially affecting the other blood components, which are usually normal. This is in contrast to Shwachman–Bodian–Diamond syndrome, in which the bone marrow defect results primarily in neutropenia, and Fanconi anemia, where all cell lines are affected resulting in pancytopenia. There is a risk to develop acute myelogenous leukemia (AML) and certain other cancers.

<span class="mw-page-title-main">GATA1</span> Protein-coding gene in humans

GATA-binding factor 1 or GATA-1 is the founding member of the GATA family of transcription factors. This protein is widely expressed throughout vertebrate species. In humans and mice, it is encoded by the GATA1 and Gata1 genes, respectively. These genes are located on the X chromosome in both species.

Pendrin is an anion exchange protein that in humans is encoded by the SLC26A4 gene . Pendrin was initially identified as a sodium-independent chloride-iodide exchanger with subsequent studies showing that it also accepts formate and bicarbonate as substrates. Pendrin is similar to the Band 3 transport protein found in red blood cells. Pendrin is the protein which is mutated in Pendred syndrome, which is an autosomal recessive disorder characterized by sensorineural hearing loss, goiter and a partial organification problem detectable by a positive perchlorate test.

<span class="mw-page-title-main">Thiamine transporter 2</span> Protein-coding gene in the species Homo sapiens

Thiamine transporter 2 (ThTr-2), also known as solute carrier family 19 member 3, is a protein that in humans is encoded by the SLC19A3 gene. SLC19A3 is a thiamine transporter.

<span class="mw-page-title-main">Folate transporter 1</span> Mammalian protein found in Homo sapiens

Folate transporter 1 is a protein which in humans is encoded by the SLC19A1 gene.

<span class="mw-page-title-main">Major facilitator superfamily</span>

The major facilitator superfamily (MFS) is a superfamily of membrane transport proteins that facilitate movement of small solutes across cell membranes in response to chemiosmotic gradients.

<span class="mw-page-title-main">Fanconi anemia, complementation group C</span> Protein-coding gene in the species Homo sapiens

Fanconi anemia group C protein is a protein that in humans is encoded by the FANCC gene. This protein delays the onset of apoptosis and promotes homologous recombination repair of damaged DNA. Mutations in this gene result in Fanconi anemia, a human rare disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages.

<span class="mw-page-title-main">FANCA</span> Protein-coding gene in the species Homo sapiens

Fanconi anaemia, complementation group A, also known as FAA, FACA and FANCA, is a protein which in humans is encoded by the FANCA gene. It belongs to the Fanconi anaemia complementation group (FANC) family of genes of which 12 complementation groups are currently recognized and is hypothesised to operate as a post-replication repair or a cell cycle checkpoint. FANCA proteins are involved in inter-strand DNA cross-link repair and in the maintenance of normal chromosome stability that regulates the differentiation of haematopoietic stem cells into mature blood cells.

<span class="mw-page-title-main">MTRR (gene)</span> Protein-coding gene in the species Homo sapiens

Methionine synthase reductase, also known as MSR, is an enzyme that in humans is encoded by the MTRR gene.

<span class="mw-page-title-main">MTHFD1</span>

MTHFD1 is a gene located in humans on chromosome 14 that encodes for a protein with three distinct enzymatic activities. C-1-tetrahydrofolate synthase, cytoplasmic also known as C1-THF synthase is an enzyme that in humans is encoded by the MTHFD1 gene.

<span class="mw-page-title-main">FANCF</span> Protein-coding gene in the species Homo sapiens

Fanconi anemia group F protein is a protein that in humans is encoded by the FANCF gene.

<span class="mw-page-title-main">TPK1</span> Protein-coding gene in the species Homo sapiens

Thiamin pyrophosphokinase 1 is an enzyme that in humans is encoded by the TPK1 gene.

<span class="mw-page-title-main">Hereditary folate malabsorption</span> Medical condition

Hereditary folate malabsorption (HFM) is a rare autosomal recessive disorder caused by loss-of-function mutations in the proton-coupled folate transporter (PCFT) gene, resulting in systemic folate deficiency and impaired delivery of folate to the brain.

<span class="mw-page-title-main">Proton-coupled folate transporter</span> Mammalian protein found in Homo sapiens

The proton-coupled folate transporter is a protein that in humans is encoded by the SLC46A1 gene. The major physiological roles of PCFTs are in mediating the intestinal absorption of folate, and its delivery to the central nervous system.

The Reduced Folate Carrier (RFC) Family is a group of transport proteins that is part of the major facilitator superfamily. RFCs take up folate, reduced folate, derivatives of reduced folate and the drug, methotrexate.

Thiamine responsive megaloblastic anemia syndrome is a very rare autosomal recessive genetic disorder affecting a thiamine transporter, which is characterized by megaloblastic anemia, diabetes mellitus, and hearing loss. The condition is treated with high doses of thiamine.

The mitochondrial folate transporter (MTF) is a transport protein that facilitates the transfer of tetrahydrofolate across the inner mitochondrial membrane. It is encoded by the SLC25A32 gene and belongs to the mitochondrial carrier superfamily.

A heme transporter is a protein that delivers heme to the various parts of a biological cell that require it.

Biotin-thiamine-responsive basal ganglia disease (BTBGD) is a rare disease that affects the nervous system, particularly the basal ganglia in the brain. It is a treatable neurometabolic disorder with autosomal recessive inheritance. First described in 1998 and then genetically distinguished in 2005, the disease is characterized by progressive brain damage that, if left untreated, can lead to coma and/or death. Commonly observed in individuals with BTBGD is recurring subacute encephalopathy along with confusion, seizures, and disordered movement (hypokinesia).

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000117479 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000040918 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Neufeld EJ, Mandel H, Raz T, Szargel R, Yandava CN, Stagg A, Fauré S, Barrett T, Buist N, Cohen N (December 1997). "Localization of the gene for thiamine-responsive megaloblastic anemia syndrome, on the long arm of chromosome 1, by homozygosity mapping". American Journal of Human Genetics. 61 (6): 1335–41. doi:10.1086/301642. PMC   1716091 . PMID   9399900.
  6. Bay A, Keskin M, Hizli S, Uygun H, Dai A, Gumruk F (October 2010). "Thiamine-responsive megaloblastic anemia syndrome". International Journal of Hematology. 92 (3): 524–6. doi:10.1007/s12185-010-0681-y. PMID   20835854. S2CID   21487938.
  7. 1 2 "Entrez Gene: solute carrier family 19 (thiamine transporter)".PD-icon.svg This article incorporates text from this source, which is in the public domain .
  8. Labay V, Raz T, Baron D, Mandel H, Williams H, Barrett T, Szargel R, McDonald L, Shalata A, Nosaka K, Gregory S, Cohen N (July 1999). "Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness". Nature Genetics. 22 (3): 300–4. doi:10.1038/10372. PMID   10391221. S2CID   26615141.
  9. Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P (October 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC   4076475 . PMID   23965338.
  10. "SLC19A2 - Thiamine transporter 1". Cardiac Organellar Protein Atlas Knowledgebase (COPaKB). Archived from the original on 2018-08-23. Retrieved 2018-08-23.
  11. 1 2 3 "SLC19A2 - Thiamine transporter 1 - Homo sapiens (Human) - SLC19A2 gene & protein". www.uniprot.org. Retrieved 2018-08-21. Creative Commons by small.svg  This article incorporates text available under the CC BY 4.0 license.
  12. 1 2 3 "UniProt: the universal protein knowledgebase". Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC   5210571 . PMID   27899622.
  13. 1 2 Dutta B, Huang W, Molero M, Kekuda R, Leibach FH, Devoe LD, Ganapathy V, Prasad PD (November 1999). "Cloning of the human thiamine transporter, a member of the folate transporter family". The Journal of Biological Chemistry. 274 (45): 31925–9. doi: 10.1074/jbc.274.45.31925 . PMID   10542220.
  14. 1 2 Subramanian VS, Marchant JS, Parker I, Said HM (February 2003). "Cell biology of the human thiamine transporter-1 (hTHTR1). Intracellular trafficking and membrane targeting mechanisms". The Journal of Biological Chemistry. 278 (6): 3976–84. doi: 10.1074/jbc.M210717200 . PMID   12454006.
  15. 1 2 Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: {603941}: {11/22/2017}: . World Wide Web URL: https://omim.org/
  16. Hoek KS, Schlegel NC, Eichhoff OM, Widmer DS, Praetorius C, Einarsson SO, Valgeirsdottir S, Bergsteinsdottir K, Schepsky A, Dummer R, Steingrimsson E (December 2008). "Novel MITF targets identified using a two-step DNA microarray strategy". Pigment Cell & Melanoma Research. 21 (6): 665–76. doi: 10.1111/j.1755-148X.2008.00505.x . PMID   19067971.
  17. IntAct. "IntAct Portal". www.ebi.ac.uk. Retrieved 2018-08-23.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.