Thin client

Last updated
Thin clients connected to their server via a computer network Thin clients.png
Thin clients connected to their server via a computer network
A public thin-client computer terminal inside a public library PCExpanion.jpg
A public thin-client computer terminal inside a public library
An Aleutia E3 thin client, with flash memory Aleutia E3 Medium Client in Hand.jpg
An Aleutia E3 thin client, with flash memory

In computer networking, a thin client, sometimes called slim client or lean client, is a simple (low-performance) computer that has been optimized for establishing a remote connection with a server-based computing environment. They are sometimes known as network computers, or in their simplest form as zero clients. The server does most of the work, which can include launching software programs, performing calculations, and storing data. This contrasts with a rich client or a conventional personal computer; the former is also intended for working in a client–server model but has significant local processing power, while the latter aims to perform its function mostly locally. [1]

Contents

Thin clients occur as components of a broader computing infrastructure, where many clients share their computations with a server or server farm. The server-side infrastructure uses cloud computing software such as application virtualization, hosted shared desktop (HSD) or desktop virtualization (VDI). This combination forms what is known as a cloud-based system, where desktop resources are centralized at one or more data centers. The benefits of centralization are hardware resource optimization, reduced software maintenance, and improved security.

Thin client hardware generally supports common peripherals, such as keyboards, mice, monitors, jacks for sound peripherals, and open ports for USB devices (e.g., printer, flash drive, webcam). Some thin clients include (legacy) serial or parallel ports to support older devices, such as receipt printers, scales or time clocks. Thin client software typically consists of a graphical user interface (GUI), cloud access agents (e.g., RDP, ICA, PCoIP), a local web browser, terminal emulators (in some cases), and a basic set of local utilities.

Characteristics

Architecture

In using cloud-based architecture, the server takes on the processing load of several client sessions, acting as a host for each endpoint device. The client software is narrowly purposed and lightweight; therefore, only the host server or server farm needs to be secured, rather than securing software installed on every endpoint device (although thin clients may still require basic security and strong authentication to prevent unauthorized access). One of the combined benefits of using cloud architecture with thin client desktops is that critical IT assets are centralized for better utilization of resources. Unused memory, bussing lanes, and processor cores within an individual user session, for example, can be leveraged for other active user sessions.

The simplicity of thin client hardware and software results in a very low total cost of ownership, but some of these initial savings can be offset by the need for a more robust cloud infrastructure required on the server side.

An alternative to traditional server deployment which spreads out infrastructure costs over time is a cloud-based subscription model known as desktop as a service, which allows IT organizations to outsource the cloud infrastructure to a third party.

Simplicity

TA7 thin client by Gigabyte Gigabyte TA7.JPG
TA7 thin client by Gigabyte

Thin client computing is known to simplify the desktop endpoints by reducing the client-side software footprint. With a lightweight, read-only operating system (OS), client-side setup and administration is greatly reduced. Cloud access is the primary role of a thin client which eliminates the need for a large suite of local user applications, data storage, and utilities. This architecture shifts most of the software execution burden from the endpoint to the data center. User assets are centralized for greater visibility. Data recovery and desktop repurposing tasks are also centralized for faster service and greater scalability.

Hardware

While the server must be robust enough to handle several client sessions at once, thin client hardware requirements are minimal compared to that of a traditional PC laptop or desktop. Most thin clients have low-energy processors, flash storage, memory, and no moving parts. This reduces the cost and power consumption, making them affordable to own and easy to replace or deploy. Numerous thin clients also use Raspberry Pis. [2] Since thin clients consist of fewer hardware components than a traditional desktop PC, they can operate in more hostile environments. And because they typically don't store critical data locally, risk of theft is minimized because there is little or no user data to be compromised.

Graphics

Modern thin clients have come a long way to meet the demands of today's graphical computing needs. New generations of low energy chipset and CPU (Central Processing Unit) combinations improve processing power and graphical capabilities. To minimize latency of high resolution video sent across the network, some host software stacks leverage multimedia redirection (MMR) techniques to offload video rendering to the desktop device. Video codecs are often embedded on the thin client to support these various multimedia formats. Other host software stacks makes use of User Datagram Protocol (UDP) in order to accelerate fast changing pixel updates required by modern video content. Thin clients typically support local software agents capable of accepting and decoding UDP.

Some of the more graphically intense use cases remain a challenge for thin clients. These use cases might include applications like photo editors, 3D drawing programs, and animation tools. This can be addressed at the host server using dedicated GPU cards, allocation of vGPUs (virtual GPU), workstation cards, and hardware acceleration cards. These solutions allow IT administrators to provide power-user performance where it is needed to a relatively generic endpoint device such as a thin client.

Limitations

To achieve such simplicity, thin clients sometimes lag behind desktop PCs in terms of extensibility. For example, if a local software utility or set of device drivers are needed in order to support a locally attached peripheral device (e.g. printer, scanner, biometric security device), the thin client operating system may lack the resources needed to fully integrate the required dependencies (although dependencies can sometimes be added if they can be identified). Modern thin clients address this limitation via port mapping or USB redirection software. However, these methods cannot address all scenarios. Therefore, it is good practice to perform validation tests of locally attached peripherals in advance to ensure compatibility. Further, in large distributed desktop environments, printers are often networked, negating the need for device drivers on every desktop.

While running local productivity applications goes beyond the normal scope of a thin client, it is sometimes needed in rare use cases. License restrictions that apply to thin clients can sometimes prevent them from supporting these applications. Local storage constraints may also limit the space required to install large applications or application suites.

It is also important to acknowledge that network bandwidth and performance is more critical in any type of cloud-based computing model. IT organizations must ensure that their network can accommodate the number of users that they need to serve. If demand for bandwidth exceeds network limits, it could result in a major loss of end user productivity.

A similar risk exists inside the data center. Servers must be sized correctly in order to deliver adequate performance to end users. In a cloud-based computing model, the servers can also represent a single point of failure risk. If a server fails, end users lose access to all of the resources supported by that server. This risk can be mitigated by building redundancies, fail-over processes, backups, and load balancing utilities into the system. Redundancy provides reliable host availability but it can add cost to smaller user populations that lack scale.

Providers

Popular providers of thin clients include Chip PC Technologies, Dell (acquired Wyse Technology in 2012), HP, ClearCube, IGEL Technology, LG, NComputing, Stratodesk, Samsung Electronics, and ZeeTim.

History

A connected Samsung Chromebox as seen from above Samsung Chromebox.JPG
A connected Samsung Chromebox as seen from above

Thin clients have their roots in multi-user systems, traditionally mainframes accessed by some sort of computer terminal. As computer graphics matured, these terminals transitioned from providing a command-line interface to a full graphical user interface, as is common on modern advanced thin clients. The prototypical multi-user environment along these lines, Unix, began to support fully graphical X terminals, i.e., devices running display server software, from about 1984. X terminals remained relatively popular even after the arrival of other thin clients in the mid-late 1990s.[ citation needed ] Modern Unix derivatives like BSD and Linux continue the tradition of the multi-user, remote display/input session. Typically, X software is not made available on non-X-based thin clients, although no technical reason for this exclusion would prevent it.

Windows NT became capable of multi-user operations primarily through the efforts of Citrix Systems, which repackaged Windows NT 3.51 as the multi-user operating system WinFrame in 1995, launched in coordination with Wyse Technology's Winterm thin client. Microsoft licensed this technology back from Citrix and implemented it into Windows NT 4.0 Terminal Server Edition, under a project codenamed "Hydra". Windows NT then became the basis of Windows 2000 and Windows XP. As of 2011, Microsoft Windows systems support graphical terminals via the Remote Desktop Services component. The Wyse Winterm was the first Windows-display-focused thin client (AKA Windows Terminal) to access this environment.

The term thin client was coined in 1993 [3] by Tim Negris, VP of Server Marketing at Oracle Corporation, while working with company founder Larry Ellison on the launch of Oracle 7. At the time, Oracle wished to differentiate their server-oriented software from Microsoft's desktop-oriented products. Ellison subsequently popularized Negris' buzzword with frequent use in his speeches and interviews about Oracle products. Ellison would go on to be a founding board member of thin client maker Network Computer, Inc (NCI), later renamed Liberate. [4]

Size comparison - traditional desktop PC vs Clientron U700 ClientronU700.jpg
Size comparison – traditional desktop PC vs Clientron U700

The term stuck for several reasons. The earlier term "graphical terminal" had been chosen to distinguish such terminals from text-based terminals, and thus put the emphasis heavily on graphics – which became obsolete as a distinguishing characteristic in the 1990s as text-only physical terminals themselves became obsolete, and text-only computer systems (a few of which existed in the 1980s) were no longer manufactured. The term "thin client" also conveys better what was then viewed as the fundamental difference: thin clients can be designed with less expensive hardware, because they have reduced computational workloads.

By the 2010s, thin clients were not the only desktop devices for general purpose computing that were "thin" – in the sense of having a small form factor and being relatively inexpensive. The nettop form factor for desktop PCs was introduced, and nettops could run full feature Windows or Linux; tablets, tablet-laptop hybrids had also entered the market. However, while there was now little size difference, thin clients retained some key advantages over these competitors, such as not needing a local drive. However, "thin client" can be a misnomer for slim form-factor computers using flash memory such as compactflash, SD card, or permanent flash memory as a hard disk substitute. In 2013, a Citrix employee experimented with a Raspberry Pi as a thin client. [5] [6] Since then, several manufacturers have introduced their version of Raspberry Pi thin clients. [2]

See also

Other client types

Others

Related Research Articles

<span class="mw-page-title-main">X Window System</span> Windowing system for bitmap displays on UNIX-like systems

The X Window System is a windowing system for bitmap displays, common on Unix-like operating systems.

<span class="mw-page-title-main">Terminal emulator</span> Program that emulates a video terminal

A terminal emulator, or terminal application, is a computer program that emulates a video terminal within some other display architecture. Though typically synonymous with a shell or text terminal, the term terminal covers all remote terminals, including graphical interfaces. A terminal emulator inside a graphical user interface is often called a terminal window.

<span class="mw-page-title-main">Windowing system</span> Software that manages separately different parts of display screens

In computing, a windowing system is a software suite that manages separately different parts of display screens. It is a type of graphical user interface (GUI) which implements the WIMP paradigm for a user interface.

In computer networking, a rich client is a computer that typically provides rich functionality independent of the central server. This kind of computer was originally known as just a "client" or "thick client," in contrast with "thin client", which describes a computer heavily dependent on a server's applications. A rich client may be described as having a rich user interaction.

<span class="mw-page-title-main">Citrix Systems</span> American software company

Citrix Systems, Inc. is an American multinational cloud computing and virtualization technology company that provides server, application and desktop virtualization, networking, software as a service (SaaS), and cloud computing technologies. Citrix claims that their products are used by over 400,000 clients worldwide, including 99% of the Fortune 100 and 98% of the Fortune 500.

Linux Terminal Server Project (LTSP) is a free and open-source terminal server for Linux that allows many people to simultaneously use the same computer. Applications run on the server with a terminal known as a thin client handling input and output. Generally, terminals are low-powered, lack a hard disk and are quieter and more reliable than desktop computers because they do not have any moving parts.

<span class="mw-page-title-main">Diskless node</span> Computer workstation operated without disk drives

A diskless node is a workstation or personal computer without disk drives, which employs network booting to load its operating system from a server.

<span class="mw-page-title-main">Multiseat configuration</span> Single computer that supports multiple local users at the same time

A multiseat, multi-station or multiterminal system is a single computer which supports multiple independent local users at the same time.

Centralized computing is computing done at a central location, using terminals that are attached to a central computer. The computer itself may control all the peripherals directly, or they may be attached via a terminal server. Alternatively, if the terminals have the capability, they may be able to connect to the central computer over the network. The terminals may be text terminals or thin clients, for example.

Application virtualization is a software technology that encapsulates computer programs from the underlying operating system on which they are executed. A fully virtualized application is not installed in the traditional sense, although it is still executed as if it were. The application behaves at runtime like it is directly interfacing with the original operating system and all the resources managed by it, but can be isolated or sandboxed to varying degrees.

Desktop virtualization is a software technology that separates the desktop environment and associated application software from the physical client device that is used to access it.

In computing, the term remote desktop refers to a software- or operating system feature that allows a personal computer's desktop environment to be run remotely from one system, while being displayed on a separate client device. Remote desktop applications have varying features. Some allow attaching to an existing user's session and "remote controlling", either displaying the remote control session or blanking the screen. Taking over a desktop remotely is a form of remote administration.

Remote Desktop Services (RDS), known as Terminal Services in Windows Server 2008 and earlier, is one of the components of Microsoft Windows that allow a user to initiate and control an interactive session on a remote computer or virtual machine over a network connection. RDS was first released in 1998 as Terminal Server in Windows NT 4.0 Terminal Server Edition, a stand-alone edition of Windows NT 4.0 Server that allowed users to log in remotely. Starting with Windows 2000, it was integrated under the name of Terminal Services as an optional component in the server editions of the Windows NT family of operating systems, receiving updates and improvements with each version of Windows. Terminal Services were then renamed to Remote Desktop Services with Windows Server 2008 R2 in 2009.

<span class="mw-page-title-main">Pano Logic</span> American information technology company

Pano Logic was a manufacturer of devices which present virtual desktops to the end user with no local processing power. They describe this concept as "zero client". This is perceived as offering benefits in end-user support and in power provision to desks. OEM versions have been included in displays from some vendors, allowing a single unit to be deployed. The company failed in October 2012. In March 2013, Propalms announced they had acquired the rights to support Panologic customers, and will "help transition the customer base to a new platform".

User environment management is the management of a computer user's experience within their desktop environment.

In computing, virtualization or virtualisation in British English is the act of creating a virtual version of something at the same abstraction level, including virtual computer hardware platforms, storage devices, and computer network resources.

A hosted desktop is a product set within the larger cloud-computing sphere generally delivered using a combination of technologies including hardware virtualization and some form of remote connection software, Citrix XenApp or Microsoft Remote Desktop Services being two of the most common. Processing takes place within the provider's datacenter environment with traffic between the datacenter and the client being primarily display updates, mouse movements and keyboard activity.

Wanova, Inc, headquartered in San Jose, California, provides software allowing IT organizations to manage, support and protect data on desktop and laptop computers. Wanova's primary product, Wanova Mirage, was designed as an alternative to server-hosted desktop virtualization technologies.

<span class="mw-page-title-main">Wyse</span> American computing system manufacturer

Wyse Technology, Inc., or simply Wyse, was an independent American manufacturer of cloud computing systems. As of 2012, Wyse is a subsidiary of Dell. Wyse are best remembered for their video terminal line introduced in the 1980s, which competed with the market-leading Digital. They also had a successful line of IBM PC compatible workstations in the mid-to-late 1980s. But starting late in the decade, Wyse were outcompeted by companies such as eventual parent Dell. Current products include thin client hardware and software as well as desktop virtualization solutions. Other products include cloud software-supporting desktop computers, laptops, and mobile devices. Dell Cloud Client Computing is partnered with IT vendors such as Citrix, IBM, Microsoft, and VMware.

Citrix Virtual Apps is an application virtualization software produced by Citrix Systems that allows Windows applications to be accessed via individual devices from a shared server or cloud system.

References

  1. Bengfort; Jacquelyn. "Thin vs. Thick vs. Zero Client: What's the Right Fit for Your Business?". Technology Solutions That Drive Business. Retrieved 2021-10-10.
  2. 1 2 Brown, Eric (26 May 2017). "Thin Client Market Embraces Raspberry Pi". Linux.com. Retrieved 25 July 2022.
  3. (thin client term was coined 1993) Richard Waters (June 2, 2009). "Is this, finally, the thin". Archived from the original on 2022-12-10.
  4. "Liberate Technologies: Taking Strange to New Levels". 17 September 2009.
  5. Dawood, Muhammad. "Citrix Receiver on Raspberry Pi delivering 1080p XenDesktop 7.1 experience". Youtube.com.
  6. Dawood, Muhammad (8 July 2019). "How good is the new Raspberry Pi 4 as a thin client?". Citrix.com.