Uhthoff's phenomenon

Last updated
Uhthoff's phenomenon
Other namesUhthoff's syndrome, Uhthoff's sign, Uhthoff's symptom
Specialty Neurology
Symptoms fatigue, pain, urinary urgency, worse optic neuritis
Causeshigh body temperature, causes longer inactivation of voltage-gated sodium channels
Diagnostic method based on symptoms
Differential diagnosis degeneration of condition of multiple sclerosis
Preventionkeeping cool, use of cool clothing
Treatmentcool clothing
Medication none
Prognosis typically completely reversible
Frequency60-80% of people with multiple sclerosis
Deaths0

Uhthoff's phenomenon (also known as Uhthoff's syndrome, [1] Uhthoff's sign, [1] and Uhthoff's symptom) is the worsening of neurologic symptoms in multiple sclerosis (MS) and other demyelinating diseases when the body is overheated. This may occur due to hot weather, exercise, fever, saunas, hot tubs, hot baths, and hot food and drink. Increased temperature slows nerve conduction, but the exact mechanism remains unknown. With an increased body temperature, nerve impulses are either blocked or slowed in a damaged nerve. Once the body temperature is normalized, signs and symptoms typically reverse.[ citation needed ]

Contents

Signs and symptoms

Symptoms of Uhthoff's phenomenon occur when exposed to heat, and include:

Causes

Uhthoff's phenomenon is caused by a raised body temperature. [1] This may be caused by:

Mechanism

The exact mechanism of Uhthoff's phenomenon is unknown. It causes a decrease in the speed of action potentials in the central nervous system (CNS). [1] [6] Heat may increase the time when voltage-gated sodium channels are inactivated, which delays further action potentials. [6] [7] This is worsened by the demyelination caused by MS. [7] Other theories have considered the role of heat shock proteins and changes to blood flow. [1]

Peripheral nerve studies have shown that even a 0.5 °C increase in body temperature can slow or block the conduction of nerve impulses in demyelinated nerves. With greater levels of demyelination, a smaller increase in temperature is needed to slow down the nerve impulse conduction. [8] Exercising and normal daily activities can cause a significant increase in body temperature in individuals with MS, especially if their mechanical efficiency is poor due to the use of mobility aids, ataxia, weakness, and spasticity. [9] However, exercise has been shown to be helpful in managing MS symptoms, reducing the risk of comorbidities, and promoting overall wellness. [10]

Diagnosis

Diagnosis of Uhthoff's phenomenon is clinical and based on symptoms when it occurs in a person who is already diagnosed with MS. [1] The main differential diagnosis is a more serious worsening of MS symptoms. [1]

Prevention and Management

Many patients with MS tend to avoid saunas, warm baths, and other sources of heat. They may wear ice or evaporative cooling clothes, such as vests, neck wraps, armbands, wristbands, and hats. Taking advantage of the cooling properties of water may help attenuate the consequences of heat sensitivity. Exercise pre-cooling via lower body immersion in water of 16–17 °C for 30 minutes may allow heat sensitive individuals with MS to exercise more comfortably with fewer side effects by minimizing body temperature increases during exercise. [9] Hydrotherapy exercise in moderately cool water of 27–29 °C water can also be advantageous to individuals with MS. Temperatures lower than 27 °C are not recommended because of the increased risk of invoking spasticity. [10]

Prognosis

Uhthoff's phenomenon is a temporary problem, and typically completely reverses once body temperature returns to normal. [2] [8] This may take up to 24 hours. [1]

Epidemiology

Uhthoff's phenomenon may affect any person with a demyelinating disease. [1] This is most commonly MS, but it may also occur with neuromyelitis optica spectrum disorder [1] [3] or Guillain-Barre Syndrome. It affects between 60% and 80% of people with MS. [1] [3]

History

Uhthoff's phenomenon was first described by Wilhelm Uhthoff in 1890 as a temporary worsening of vision with exercise in patients with optic neuritis. [1] [11] Later research revealed the link between neurological signs such as visual loss and increased heat production and Uhthoff's belief that exercise was the etiology of visual loss was replaced by the conclusions of these later researchers stating that heat was the prime etiology. [12]

Related Research Articles

<span class="mw-page-title-main">Acute disseminated encephalomyelitis</span> Autoimmune disease

Acute disseminated encephalomyelitis (ADEM), or acute demyelinating encephalomyelitis, is a rare autoimmune disease marked by a sudden, widespread attack of inflammation in the brain and spinal cord. As well as causing the brain and spinal cord to become inflamed, ADEM also attacks the nerves of the central nervous system and damages their myelin insulation, which, as a result, destroys the white matter. It is often triggered by a viral infection or vaccinations.

<span class="mw-page-title-main">Myelin</span> Fatty substance that surrounds nerve cell axons to insulate them and increase transmission speed

Myelin is a lipid-rich material that surrounds nerve cell axons to insulate them and increase the rate at which electrical impulses are passed along the axon. The myelinated axon can be likened to an electrical wire with insulating material (myelin) around it. However, unlike the plastic covering on an electrical wire, myelin does not form a single long sheath over the entire length of the axon. Rather, myelin sheaths the nerve in segments: in general, each axon is encased with multiple long myelinated sections with short gaps in between called nodes of Ranvier.

Optic neuritis describes any condition that causes inflammation of the optic nerve; it may be associated with demyelinating diseases, or infectious or inflammatory processes.

<span class="mw-page-title-main">Multiple sclerosis</span> Disease that damages the myelin sheaths around nerves

Multiplesclerosis (MS) is the most common demyelinating disease, in which the insulating covers of nerve cells in the brain and spinal cord are damaged. This damage disrupts the ability of parts of the nervous system to transmit signals, resulting in a range of signs and symptoms, including physical, mental, and sometimes psychiatric problems. Specific symptoms can include double vision, blindness in one eye, muscle weakness, and trouble with sensation or coordination. MS takes several forms, with new symptoms either occurring in isolated attacks or building up over time. In the relapsing forms of MS, between attacks, symptoms may disappear completely, although some permanent neurological problems often remain, especially as the disease advances.

<span class="mw-page-title-main">Demyelinating disease</span> Any neurological disease in which the myelin sheath of neurons is damaged

A demyelinating disease is any disease of the nervous system in which the myelin sheath of neurons is damaged. This damage impairs the conduction of signals in the affected nerves. In turn, the reduction in conduction ability causes deficiency in sensation, movement, cognition, or other functions depending on which nerves are involved.

Neuromyelitis optica spectrum disorders (NMOSD), including neuromyelitis optica (NMO), are autoimmune diseases characterized by acute inflammation of the optic nerve and the spinal cord (myelitis). Episodes of ON and myelitis can be simultaneous or successive. A relapsing disease course is common, especially in untreated patients. In more than 80% of cases, NMO is caused by immunoglobulin G autoantibodies to aquaporin 4 (anti-AQP4), the most abundant water channel protein in the central nervous system. A subset of anti-AQP4-negative cases is associated with antibodies against myelin oligodendrocyte glycoprotein (anti-MOG). Rarely, NMO may occur in the context of other autoimmune diseases or infectious diseases. In some cases, the etiology remains unknown.

Interferon beta-1b is a cytokine in the interferon family used to treat the relapsing-remitting and secondary-progressive forms of multiple sclerosis (MS). It is approved for use after the first MS event. Closely related is interferon beta 1a, also indicated for MS, with a very similar drug profile.

<span class="mw-page-title-main">Neuritis</span> Inflammation of a nerve or generally any part of the nervous system

Neuritis is inflammation of a nerve or the general inflammation of the peripheral nervous system. Inflammation, and frequently concomitant demyelination, cause impaired transmission of neural signals and leads to aberrant nerve function. Neuritis is often conflated with neuropathy, a broad term describing any disease process which affects the peripheral nervous system. However, neuropathies may be due to either inflammatory or non-inflammatory causes, and the term encompasses any form of damage, degeneration, or dysfunction, while neuritis refers specifically to the inflammatory process.

<span class="mw-page-title-main">Lesional demyelinations of the central nervous system</span>

Multiple sclerosis and other demyelinating diseases of the central nervous system (CNS) produce lesions and glial scars or scleroses. They present different shapes and histological findings according to the underlying condition that produces them.

Remyelination is the process of propagating oligodendrocyte precursor cells to form oligodendrocytes to create new myelin sheaths on demyelinated axons in the CNS. This is a process naturally regulated in the body and tends to be very efficient in a healthy CNS. The process creates a thinner myelin sheath than normal, but it helps to protect the axon from further damage, from overall degeneration, and proves to increase conductance once again. The processes underlying remyelination are under investigation in the hope of finding treatments for demyelinating diseases, such as multiple sclerosis.

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease that affects the central nervous system (CNS). Several therapies for it exist, although there is no known cure.

Inflammatory demyelinating diseases (IDDs), sometimes called Idiopathic (IIDDs) due to the unknown etiology of some of them, are a heterogenous group of demyelinating diseases - conditions that cause damage to myelin, the protective sheath of nerve fibers - that occur against the background of an acute or chronic inflammatory process. IDDs share characteristics with and are often grouped together under Multiple Sclerosis. They are sometimes considered different diseases from Multiple Sclerosis, but considered by others to form a spectrum differing only in terms of chronicity, severity, and clinical course.

<span class="mw-page-title-main">Multiple sclerosis signs and symptoms</span>

Multiple sclerosis can cause a variety of symptoms: changes in sensation (hypoesthesia), muscle weakness, abnormal muscle spasms, or difficulty moving; difficulties with coordination and balance; problems in speech (dysarthria) or swallowing (dysphagia), visual problems, fatigue and acute or chronic pain syndromes, bladder and bowel difficulties, cognitive impairment, or emotional symptomatology. The main clinical measure in progression of the disability and severity of the symptoms is the Expanded Disability Status Scale or EDSS.

A clinically isolated syndrome (CIS) is a clinical situation of an individual's first neurological episode, caused by inflammation or demyelination of nerve tissue. An episode may be monofocal, in which symptoms present at a single site in the central nervous system, or multifocal, in which multiple sites exhibit symptoms. CIS with enough paraclinical evidence can be considered as a clinical stage of multiple sclerosis (MS). It can also be retrospectively diagnosed as a kind of MS when more evidence is available.

<span class="mw-page-title-main">Tumefactive multiple sclerosis</span> Medical condition

Tumefactive multiple sclerosis is a condition in which the central nervous system of a person has multiple demyelinating lesions with atypical characteristics for those of standard multiple sclerosis (MS). It is called tumefactive as the lesions are "tumor-like" and they mimic tumors clinically, radiologically and sometimes pathologically.

<span class="mw-page-title-main">Multiple sclerosis diagnosis</span>

Current standards for diagnosing multiple sclerosis (MS) are based on the 2018 revision of McDonald criteria. They rely on MRI detection of demyelinating lesions in the CNS, which are distributed in space (DIS) and in time (DIT). It is also a requirement that any possible known disease that produces demyelinating lesions is ruled out before applying McDonald's criteria.

MOG antibody disease (MOGAD) or MOG antibody-associated encephalomyelitis (MOG-EM) is an inflammatory demyelinating disease of the central nervous system. Serum anti-myelin oligodendrocyte glycoprotein antibodies are present in up to half of patients with an acquired demyelinating syndrome and have been described in association with a range of phenotypic presentations, including acute disseminated encephalomyelitis, optic neuritis, transverse myelitis, and neuromyelitis optica.

Anti-neurofascin demyelinating diseases refers to health conditions engendered by auto-antibodies against neurofascins, which can produce both central and peripheral demyelination. Some cases of combined central and peripheral demyelination (CCPD) could be produced by them.

Anti-AQP4 diseases, are a group of diseases characterized by auto-antibodies against aquaporin 4.

Uhthoff is a surname. Notable people with the surname include:

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Panginikkod, Sreelakshmi; Rayi, Appaji; Cabrero, Franklyn Rocha; Rukmangadachar, Lokesh A. (January 2021). "Uhthoff phenomenon". StatPearls. PMID   29261916 via PubMed.
  2. 1 2 3 4 5 Flensner, G.; Ek, A.C.; Soderhamn, O.; Landtblom, A.M. (2011). "Sensitivity to heat in MS patients: a factor strongly influencing symptomology-an explorative survey". BMC Neurol. 11: 27. doi:10.1186/1471-2377-11-27. PMC   3056752 . PMID   21352533.
  3. 1 2 3 4 5 6 7 8 Park, Kwiyoung; Tanaka, Keiko; Tanaka, Masami (2014). "Uhthoff's Phenomenon in Multiple Sclerosis and Neuromyelitis Optica". European Neurology. 72 (3–4): 153–156. doi:10.1159/000361045. ISSN   0014-3022. PMID   25195501. S2CID   46704524 via Karger Publishers.
  4. Thurtell, M. J. (2014). "Visual Loss, Transient". Encyclopedia of the Neurological Sciences (2nd ed.). Academic Press. pp. 698–703. doi:10.1016/B978-0-12-385157-4.00168-8. ISBN   978-0-12-385158-1.
  5. 1 2 3 Khanh Vu, T.H.; Zhu, R.; Yang, L.; Chen, D. F. (2014). "Optic Nerve Structure and Pathologies". Pathobiology of Human Disease - A Dynamic Encyclopedia of Disease Mechanisms. Academic Press. pp. 2115–2125. doi:10.1016/B978-0-12-386456-7.04707-9. ISBN   978-0-12-386457-4.
  6. 1 2 Davis SL, Frohman TC, Crandall CG, et al. (March 2008). "Modeling Uhthoff's phenomenon in MS patients with internuclear ophthalmoparesis". Neurology. 70 (13 Pt 2): 1098–106. doi:10.1212/01.wnl.0000291009.69226.4d. PMID   18287569. S2CID   24002003.
  7. 1 2 Johns, Paul (2014-01-01). "Chapter 14 - Multiple Sclerosis". Clinical Neuroscience. Churchill Livingstone. pp. 181–196. doi:10.1016/B978-0-443-10321-6.00014-X. ISBN   978-0-443-10321-6.{{cite book}}: CS1 maint: date and year (link)
  8. 1 2 Davis, Scott L.; Jay, Ollie; Wilson, Thad E. (2018). "Thermoregulatory dysfunction in multiple sclerosis". Handbook of Clinical Neurology. Vol. 157. Elsevier. pp. 701–714. doi:10.1016/B978-0-444-64074-1.00042-2. ISBN   9780444640741. ISSN   0072-9752. PMID   30459034.
  9. 1 2 White, A.T.; Wilson, T.E.; Davis, S.L.; Petajan, J.H. (2000). "Effect of precooling on physical performance in multiple sclerosis". Mult Scler. 6 (3): 176–180. doi:10.1177/135245850000600307. PMID   10871829. S2CID   41165079.
  10. 1 2 White, L.J.; Dressendorfer, L.H. (2004). "Exercise and multiple sclerosis". Sports Med. 34 (15): 1077–1100. doi:10.2165/00007256-200434150-00005. PMID   15575796. S2CID   27787579.
  11. W. Uhthoff: Untersuchungen über die bei der multiplen Herdsklerose vorkommenden Augenstörungen. Archiv für Psychiatrie und Nervenkrankheiten, Berlin, 1890, 21: 55-116 and 303-410.
  12. Guthrie, T.C.; Nelson, D.A. (1995). "Influence of temperature changes on multiple sclerosis: critical review of mechanisms and research potential". J Neurol Sci. 129 (1): 1–8. doi:10.1016/0022-510x(94)00248-m. PMID   7751837. S2CID   12555514.