Wave vector

Last updated

In physics, a wave vector (or wavevector) is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave (inversely proportional to the wavelength), and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.

Contents

A closely related vector is the angular wave vector (or angular wavevector), with a typical unit being radian per metre. The wave vector and angular wave vector are related by a fixed constant of proportionality, 2π radians per cycle. [lower-alpha 1]

It is common in several fields of physics to refer to the angular wave vector simply as the wave vector, in contrast to, for example, crystallography. [1] [2] It is also common to use the symbol k for whichever is in use.

In the context of special relativity, wave vector can refer to a four-vector, in which the (angular) wave vector and (angular) frequency are combined.

Definition

Wavelength of a sine wave, l, can be measured between any two consecutive points with the same phase, such as between adjacent crests, or troughs, or adjacent zero crossings with the same direction of transit, as shown. Sine wavelength.svg
Wavelength of a sine wave, λ, can be measured between any two consecutive points with the same phase, such as between adjacent crests, or troughs, or adjacent zero crossings with the same direction of transit, as shown.

The terms wave vector and angular wave vector have distinct meanings. Here, the wave vector is denoted by and the wavenumber by . The angular wave vector is denoted by k and the angular wavenumber by k = |k|. These are related by .

A sinusoidal traveling wave follows the equation

where:

The equivalent equation using the wave vector and frequency is [3]

where:

Direction of the wave vector

The direction in which the wave vector points must be distinguished from the "direction of wave propagation". The "direction of wave propagation" is the direction of a wave's energy flow, and the direction that a small wave packet will move, i.e. the direction of the group velocity. For light waves in vacuum, this is also the direction of the Poynting vector. On the other hand, the wave vector points in the direction of phase velocity. In other words, the wave vector points in the normal direction to the surfaces of constant phase, also called wavefronts.

In a lossless isotropic medium such as air, any gas, any liquid, amorphous solids (such as glass), and cubic crystals, the direction of the wavevector is the same as the direction of wave propagation. If the medium is anisotropic, the wave vector in general points in directions other than that of the wave propagation. The wave vector is always perpendicular to surfaces of constant phase.

For example, when a wave travels through an anisotropic medium, such as light waves through an asymmetric crystal or sound waves through a sedimentary rock, the wave vector may not point exactly in the direction of wave propagation. [4] [5]

In solid-state physics

In solid-state physics, the "wavevector" (also called k-vector) of an electron or hole in a crystal is the wavevector of its quantum-mechanical wavefunction. These electron waves are not ordinary sinusoidal waves, but they do have a kind of envelope function which is sinusoidal, and the wavevector is defined via that envelope wave, usually using the "physics definition". See Bloch's theorem for further details. [6]

In special relativity

A moving wave surface in special relativity may be regarded as a hypersurface (a 3D subspace) in spacetime, formed by all the events passed by the wave surface. A wavetrain (denoted by some variable X) can be regarded as a one-parameter family of such hypersurfaces in spacetime. This variable X is a scalar function of position in spacetime. The derivative of this scalar is a vector that characterizes the wave, the four-wavevector. [7]

The four-wavevector is a wave four-vector that is defined, in Minkowski coordinates, as:

where the angular frequency is the temporal component, and the wavenumber vector is the spatial component.

Alternately, the wavenumber k can be written as the angular frequency ω divided by the phase-velocity vp, or in terms of inverse period T and inverse wavelength λ.

When written out explicitly its contravariant and covariant forms are:

In general, the Lorentz scalar magnitude of the wave four-vector is:

The four-wavevector is null for massless (photonic) particles, where the rest mass

An example of a null four-wavevector would be a beam of coherent, monochromatic light, which has phase-velocity

{for light-like/null}

which would have the following relation between the frequency and the magnitude of the spatial part of the four-wavevector:

{for light-like/null}

The four-wavevector is related to the four-momentum as follows:

The four-wavevector is related to the four-frequency as follows:

The four-wavevector is related to the four-velocity as follows:

Lorentz transformation

Taking the Lorentz transformation of the four-wavevector is one way to derive the relativistic Doppler effect. The Lorentz matrix is defined as

In the situation where light is being emitted by a fast moving source and one would like to know the frequency of light detected in an earth (lab) frame, we would apply the Lorentz transformation as follows. Note that the source is in a frame Ss and earth is in the observing frame, Sobs. Applying the Lorentz transformation to the wave vector

and choosing just to look at the component results in

where is the direction cosine of with respect to

So

Source moving away (redshift)

As an example, to apply this to a situation where the source is moving directly away from the observer (), this becomes:

Source moving towards (blueshift)

To apply this to a situation where the source is moving straight towards the observer (θ = 0), this becomes:

Source moving tangentially (transverse Doppler effect)

To apply this to a situation where the source is moving transversely with respect to the observer (θ = π/2), this becomes:

See also

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the change per unit length, but it is otherwise dimensionless. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.

<span class="mw-page-title-main">Four-vector</span> 4-dimensional vector in relativity

In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.

<span class="mw-page-title-main">Hamilton–Jacobi equation</span> A reformulation of Newtons laws of motion using the calculus of variations

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.

In fluid dynamics, Couette flow is the flow of a viscous fluid in the space between two surfaces, one of which is moving tangentially relative to the other. The relative motion of the surfaces imposes a shear stress on the fluid and induces flow. Depending on the definition of the term, there may also be an applied pressure gradient in the flow direction.

In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any fermionic particle that is its own anti-particle.

In differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz transformations. In some canonical formulations of general relativity, a spin connection is defined on spatial slices and can also be regarded as the gauge field generated by local rotations.

In theoretical physics, a scalar–tensor theory is a field theory that includes both a scalar field and a tensor field to represent a certain interaction. For example, the Brans–Dicke theory of gravitation uses both a scalar field and a tensor field to mediate the gravitational interaction.

A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

In the theory of general relativity, a stress–energy–momentum pseudotensor, such as the Landau–Lifshitz pseudotensor, is an extension of the non-gravitational stress–energy tensor that incorporates the energy–momentum of gravity. It allows the energy–momentum of a system of gravitating matter to be defined. In particular it allows the total of matter plus the gravitating energy–momentum to form a conserved current within the framework of general relativity, so that the total energy–momentum crossing the hypersurface of any compact space–time hypervolume vanishes.

In mathematical physics, spacetime algebra (STA) is a name for the Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4). According to David Hestenes, spacetime algebra can be particularly closely associated with the geometry of special relativity and relativistic spacetime.

When an electromagnetic wave travels through a medium in which it gets attenuated, it undergoes exponential decay as described by the Beer–Lambert law. However, there are many possible ways to characterize the wave and how quickly it is attenuated. This article describes the mathematical relationships among:

In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.

The table of chords, created by the Greek astronomer, geometer, and geographer Ptolemy in Egypt during the 2nd century AD, is a trigonometric table in Book I, chapter 11 of Ptolemy's Almagest, a treatise on mathematical astronomy. It is essentially equivalent to a table of values of the sine function. It was the earliest trigonometric table extensive enough for many practical purposes, including those of astronomy. Since the 8th and 9th centuries, the sine and other trigonometric functions have been used in Islamic mathematics and astronomy, reforming the production of sine tables. Khwarizmi and Habash al-Hasib later produced a set of trigonometric tables.

<span class="mw-page-title-main">Relativistic angular momentum</span> Angular momentum in special and general relativity

In physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics.

In physics, the Maxwell–Jüttner distribution, sometimes called Jüttner–Synge distribution, is the distribution of speeds of particles in a hypothetical gas of relativistic particles. Similar to the Maxwell–Boltzmann distribution, the Maxwell–Jüttner distribution considers a classical ideal gas where the particles are dilute and do not significantly interact with each other. The distinction from Maxwell–Boltzmann's case is that effects of special relativity are taken into account. In the limit of low temperatures much less than , this distribution becomes identical to the Maxwell–Boltzmann distribution.

References

  1. In most contexts, both the radian and the cycle (or period) are treated as the dimensionless quantity 1, reducing this constant to 2π.
  1. Physics example: Harris, Benenson, Stöcker (2002). Handbook of Physics. p. 288. ISBN   978-0-387-95269-7.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. Crystallography example: Vaĭnshteĭn (1994). Modern Crystallography. p. 259. ISBN   978-3-540-56558-1.
  3. Vaĭnshteĭn, Boris Konstantinovich (1994). Modern Crystallography. p. 259. ISBN   978-3-540-56558-1.
  4. Fowles, Grant (1968). Introduction to modern optics. Holt, Rinehart, and Winston. p. 177.
  5. "This effect has been explained by Musgrave (1959) who has shown that the energy of an elastic wave in an anisotropic medium will not, in general, travel along the same path as the normal to the plane wavefront ...", Sound waves in solids by Pollard, 1977. link
  6. Donald H. Menzel (1960). "§10.5 Bloch wave". Fundamental Formulas of Physics, Volume 2 (Reprint of Prentice-Hall 1955 2nd ed.). Courier-Dover. p. 624. ISBN   978-0486605968.
  7. Wolfgang Rindler (1991). "§24 Wave motion". Introduction to Special Relativity (2nd ed.). Oxford Science Publications. pp.  60–65. ISBN   978-0-19-853952-0.

Further reading