Wigner crystal

Last updated
Structure of a two-dimensional Wigner crystal in a parabolic potential trap with 600 electrons. Triangles and squares mark positions of the topological defects. Wigner cluster 600.png
Structure of a two-dimensional Wigner crystal in a parabolic potential trap with 600 electrons. Triangles and squares mark positions of the topological defects.

A Wigner crystal is the solid (crystalline) phase of electrons first predicted by Eugene Wigner in 1934. [1] [2] A gas of electrons moving in a uniform, inert, neutralizing background (i.e. Jellium Model) will crystallize and form a lattice if the electron density is less than a critical value. This is because the potential energy dominates the kinetic energy at low densities, so the detailed spatial arrangement of the electrons becomes important. To minimize the potential energy, the electrons form a bcc (body-centered cubic) lattice in 3D, a triangular lattice in 2D and an evenly spaced lattice in 1D. Most experimentally observed Wigner clusters exist due to the presence of the external confinement, i.e. external potential trap. As a consequence, deviations from the b.c.c or triangular lattice are observed. [3] A crystalline state of the 2D electron gas can also be realized by applying a sufficiently strong magnetic field. [ citation needed ] However, it is still not clear whether it is the Wigner crystallization that has led to observation of insulating behaviour in magnetotransport measurements on 2D electron systems, since other candidates are present, such as Anderson localization.[ clarification needed ]

Contents

More generally, a Wigner crystal phase can also refer to a crystal phase occurring in non-electronic systems at low density. In contrast, most crystals melt as the density is lowered. Examples seen in the laboratory are charged colloids or charged plastic spheres.[ citation needed ]

Description

A uniform electron gas at zero temperature is characterised by a single dimensionless parameter, the so-called Wigner–Seitz radius rs = a / ab, where a is the average inter-particle spacing and ab is the Bohr radius. The kinetic energy of an electron gas scales as 1/rs2, this can be seen for instance by considering a simple Fermi gas. The potential energy, on the other hand, is proportional to 1/rs. When rs becomes larger at low density, the latter becomes dominant and forces the electrons as far apart as possible. As a consequence, they condense into a close-packed lattice. The resulting electron crystal is called the Wigner crystal. [4]

Based on the Lindemann criterion one can find an estimate for the critical rs. The criterion states that the crystal melts when the root-mean-square displacement of the electrons is about a quarter of the lattice spacing a. On the assumption that vibrations of the electrons are approximately harmonic, one can use that for a quantum harmonic oscillator the root mean square displacement in the ground state (in 3D) is given by

with the Planck constant, me the electron mass and ω the characteristic frequency of the oscillations. The latter can be estimated by considering the electrostatic potential energy for an electron displaced by r from its lattice point. Say that the Wigner–Seitz cell associated to the lattice point is approximately a sphere of radius a/2. The uniform, neutralizing background then gives rise to a smeared positive charge of density with the electron charge. The electric potential felt by the displaced electron as a result of this is given by

with ε0 the vacuum permittivity. Comparing to the energy of a harmonic oscillator, one can read off

or, combining this with the result from the quantum harmonic oscillator for the root-mean-square displacement

The Lindemann criterion than gives us the estimate that rs > 40 is required to give a stable Wigner crystal. Quantum Monte Carlo simulations indicate that the uniform electron gas actually crystallizes at rs = 106 in 3D [5] [6] and rs = 31 in 2D. [7] [8] [9]

For classical systems at elevated temperatures one uses the average interparticle interaction in units of the temperature: .. The Wigner transition occurs at G = 170 in 3D [10] and G = 125 in 2D. [11] It is believed that ions, such as those of iron, form a Wigner crystal in the interiors of white dwarf stars.

Experimental realisation

In practice, it is difficult to experimentally realize a Wigner crystal because quantum mechanical fluctuations overpower the Coulomb repulsion and quickly cause disorder. Low electron density is needed. One notable example occurs in quantum dots with low electron densities or high magnetic fields where electrons will spontaneously localize in some situations, forming a so-called rotating "Wigner molecule", [12] a crystalline-like state adapted to the finite size of the quantum dot.

Wigner crystallization in a two-dimensional electron gas under high magnetic fields was predicted (and was observed experimentally) [13] to occur for small filling factors [14] (less than ) of the lowest Landau level. For larger fractional fillings, the Wigner crystal was thought to be unstable relative to the fractional quantum Hall effect (FQHE) liquid states. A Wigner crystal was observed in the immediate neighborhood of the large fractional filling , [15] and led to a new understanding [16] (based on the pinning of a rotating Wigner molecule) for the interplay between quantum-liquid and pinned-solid phases in the lowest Landau level.

Another experimental realisation of the Wigner crystal occurred in single-electron transistors with very low currents, where a 1D Wigner crystal formed. The current due to each electron can be directly detected experimentally. [17]

Additionally, experiments using quantum wires (short quantum wires are sometimes referred to as ‘quantum point contacts’, (QPCs)) have led to suggestions of Wigner crystallization in 1D systems. [18] In the experiment performed by Hew et al., a 1D channel was formed by confining electrons in both directions transverse to the electron transport, by the band structure of the GaAs/AlGaAs heterojunction and the potential from the QPC. The device design allowed the electron density in the 1D channel to vary relatively independently of the strength of transverse confining potential, thus allowing experiments to be performed in the regime in which Coulomb interactions between electrons dominate the kinetic energy. Conductance through a QPC shows a series of plateaux quantized in units of the conductance quantum, 2 e 2/ h However, this experiment reported a disappearance of the first plateau (resulting in a jump in conductance of 4 e 2/ h ), which was attributed to the formation of two parallel rows of electrons. In a strictly 1D system, electrons occupy equidistant points along a line, i.e. a 1D Wigner crystal. As the electron density increases, the Coulomb repulsion becomes large enough to overcome the electrostatic potential confining the 1D Wigner crystal in the transverse direction, leading to a lateral rearrangement of the electrons into a double-row structure. [19] [20] The evidence of a double row observed by Hew et al. may point towards the beginnings of a Wigner crystal in a 1D system.

In 2018, a transverse magnetic focusing that combines charge and spin detection was used to directly probe a Wigner crystal and its spin properties in 1D quantum wires with tunable width. It provides direct evidence and a better understanding of the nature of zigzag Wigner crystallization by unveiling both the structural and the spin phase diagrams. [21]

Direct evidence for the formation of small Wigner crystals was reported in 2019. [22]

In 2024, physicists managed to directly image a Wigner crystal with a scanning tunneling microscope. [23] [24]

Wigner crystal materials

Some layered Van der Waals materials, such as transition metal dichalcogenides have intrinsically large rs values which exceed the 2D theoretical Wigner crystal limit rs=31~38. The origin of the large rs is partly due to the suppressed kinetic energy arising from a strong electron phonon interaction which leads to polaronic band narrowing, and partly due to the low carrier density n at low temperatures. The charge density wave (CDW) state in such materials, such as 1T-TaS2, with a sparsely filled √13x√13 superlattice and rs=70~100 may be considered to be better described in terms of a Wigner crystal than the more traditional charge density wave. This viewpoint is supported both by modelling and systematic scanning tunnelling microscopy measurements. [25] Thus, Wigner crystal superlattices in so-called CDW systems may be considered to be the first direct observation of ordered electron states localised by mutual Coulomb interaction. An important criterion for is the depth of charge modulation, which depends on the material, and only systems where rs exceeds the theoretical limit can be regarded as Wigner crystals.

In 2020, a direct image of a Wigner crystal observed by microscopy was obtained in molybdenum diselenide/molybdenum disulfide (MoSe2/MoS2) moiré heterostructures. [26] [27]

A 2021 experiment created a Wigner crystal near 0K by confining electrons using a monolayer sheet of molybdenum diselenide. The sheet was sandwiched between two graphene electrodes and a voltage was applied. The resulting electron spacing was around 20 nanometers, as measured by the stationary appearance of light-agitated excitons. [28] [29]

Another 2021 experiment reported quantum Wigner crystals where quantum fluctuations dominate over the thermal fluctuation in two coupled layers of molybdenum diselenide without any magnetic field. The researchers documented both thermal and quantum melting of the Wigner crystal in this experiment. [30] [31]

Related Research Articles

<span class="mw-page-title-main">Bose–Einstein condensate</span> State of matter

In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero. Under such conditions, a large fraction of bosons occupy the lowest quantum state, at which microscopic quantum-mechanical phenomena, particularly wavefunction interference, become apparent macroscopically. More generally, condensation refers to the appearance of macroscopic occupation of one or several states: for example, in BCS theory, a superconductor is a condensate of Cooper pairs. As such, condensation can be associated with phase transition, and the macroscopic occupation of the state is the order parameter.

The quantum Hall effect is a quantized version of the Hall effect which is observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance Rxy exhibits steps that take on the quantized values

<span class="mw-page-title-main">Fermi liquid theory</span> Theoretical model in physics

Fermi liquid theory is a theoretical model of interacting fermions that describes the normal state of the conduction electrons in most metals at sufficiently low temperatures. The theory describes the behavior of many-body systems of particles in which the interactions between particles may be strong. The phenomenological theory of Fermi liquids was introduced by the Soviet physicist Lev Davidovich Landau in 1956, and later developed by Alexei Abrikosov and Isaak Khalatnikov using diagrammatic perturbation theory. The theory explains why some of the properties of an interacting fermion system are very similar to those of the ideal Fermi gas, and why other properties differ.

<span class="mw-page-title-main">Polaron</span> Quasiparticle in condensed matter physics

A polaron is a quasiparticle used in condensed matter physics to understand the interactions between electrons and atoms in a solid material. The polaron concept was proposed by Lev Landau in 1933 and Solomon Pekar in 1946 to describe an electron moving in a dielectric crystal where the atoms displace from their equilibrium positions to effectively screen the charge of an electron, known as a phonon cloud. This lowers the electron mobility and increases the electron's effective mass.

<span class="mw-page-title-main">Magnon</span> Spin 1 quasiparticle; quantum of a spin wave

A magnon is a quasiparticle, a collective excitation of the spin structure of an electron in a crystal lattice. In the equivalent wave picture of quantum mechanics, a magnon can be viewed as a quantized spin wave. Magnons carry a fixed amount of energy and lattice momentum, and are spin-1, indicating they obey boson behavior.

Jellium, also known as the uniform electron gas (UEG) or homogeneous electron gas (HEG), is a quantum mechanical model of interacting electrons in a solid where the positive charges are assumed to be uniformly distributed in space; the electron density is a uniform quantity as well in space. This model allows one to focus on the effects in solids that occur due to the quantum nature of electrons and their mutual repulsive interactions without explicit introduction of the atomic lattice and structure making up a real material. Jellium is often used in solid-state physics as a simple model of delocalized electrons in a metal, where it can qualitatively reproduce features of real metals such as screening, plasmons, Wigner crystallization and Friedel oscillations.

A two-dimensional electron gas (2DEG) is a scientific model in solid-state physics. It is an electron gas that is free to move in two dimensions, but tightly confined in the third. This tight confinement leads to quantized energy levels for motion in the third direction, which can then be ignored for most problems. Thus the electrons appear to be a 2D sheet embedded in a 3D world. The analogous construct of holes is called a two-dimensional hole gas (2DHG), and such systems have many useful and interesting properties.

<span class="mw-page-title-main">Optical lattice</span> Atomic-scale structure formed through the Stark shift by opposing beams of light

An optical lattice is formed by the interference of counter-propagating laser beams, creating a spatially periodic polarization pattern. The resulting periodic potential may trap neutral atoms via the Stark shift. Atoms are cooled and congregate at the potential extrema. The resulting arrangement of trapped atoms resembles a crystal lattice and can be used for quantum simulation.

The Bose–Hubbard model gives a description of the physics of interacting spinless bosons on a lattice. It is closely related to the Hubbard model that originated in solid-state physics as an approximate description of superconducting systems and the motion of electrons between the atoms of a crystalline solid. The model was introduced by Gersch and Knollman in 1963 in the context of granular superconductors. The model rose to prominence in the 1980s after it was found to capture the essence of the superfluid-insulator transition in a way that was much more mathematically tractable than fermionic metal-insulator models.

<span class="mw-page-title-main">Quantum point contact</span>

A quantum point contact (QPC) is a narrow constriction between two wide electrically conducting regions, of a width comparable to the electronic wavelength.

A charge density wave (CDW) is an ordered quantum fluid of electrons in a linear chain compound or layered crystal. The electrons within a CDW form a standing wave pattern and sometimes collectively carry an electric current. The electrons in such a CDW, like those in a superconductor, can flow through a linear chain compound en masse, in a highly correlated fashion. Unlike a superconductor, however, the electric CDW current often flows in a jerky fashion, much like water dripping from a faucet due to its electrostatic properties. In a CDW, the combined effects of pinning and electrostatic interactions likely play critical roles in the CDW current's jerky behavior, as discussed in sections 4 & 5 below.

In materials science, heavy fermion materials are a specific type of intermetallic compound, containing elements with 4f or 5f electrons in unfilled electron bands. Electrons are one type of fermion, and when they are found in such materials, they are sometimes referred to as heavy electrons. Heavy fermion materials have a low-temperature specific heat whose linear term is up to 1000 times larger than the value expected from the free electron model. The properties of the heavy fermion compounds often derive from the partly filled f-orbitals of rare-earth or actinide ions, which behave like localized magnetic moments.

In applied mathematics, the numerical sign problem is the problem of numerically evaluating the integral of a highly oscillatory function of a large number of variables. Numerical methods fail because of the near-cancellation of the positive and negative contributions to the integral. Each has to be integrated to very high precision in order for their difference to be obtained with useful accuracy.

A Peierls transition or Peierls distortion is a distortion of the periodic lattice of a one-dimensional crystal. Atomic positions oscillate, so that the perfect order of the 1-D crystal is broken.

<span class="mw-page-title-main">Luttinger's theorem</span>

In condensed matter physics, Luttinger's theorem is a result derived by J. M. Luttinger and J. C. Ward in 1960 that has broad implications in the field of electron transport. It arises frequently in theoretical models of correlated electrons, such as the high-temperature superconductors, and in photoemission, where a metal's Fermi surface can be directly observed.

In condensed matter physics, a quantum spin liquid is a phase of matter that can be formed by interacting quantum spins in certain magnetic materials. Quantum spin liquids (QSL) are generally characterized by their long-range quantum entanglement, fractionalized excitations, and absence of ordinary magnetic order.

In quantum mechanics, orbital magnetization, Morb, refers to the magnetization induced by orbital motion of charged particles, usually electrons in solids. The term "orbital" distinguishes it from the contribution of spin degrees of freedom, Mspin, to the total magnetization. A nonzero orbital magnetization requires broken time-reversal symmetry, which can occur spontaneously in ferromagnetic and ferrimagnetic materials, or can be induced in a non-magnetic material by an applied magnetic field.

<span class="mw-page-title-main">Superradiant phase transition</span> Process in quantum optics

In quantum optics, a superradiant phase transition is a phase transition that occurs in a collection of fluorescent emitters, between a state containing few electromagnetic excitations and a superradiant state with many electromagnetic excitations trapped inside the emitters. The superradiant state is made thermodynamically favorable by having strong, coherent interactions between the emitters.

Bose–Einstein condensation can occur in quasiparticles, particles that are effective descriptions of collective excitations in materials. Some have integer spins and can be expected to obey Bose–Einstein statistics like traditional particles. Conditions for condensation of various quasiparticles have been predicted and observed. The topic continues to be an active field of study.

<span class="mw-page-title-main">Electron-on-helium qubit</span> Quantum bit

An electron-on-helium qubit is a quantum bit for which the orthonormal basis states |0⟩ and |1⟩ are defined by quantized motional states or alternatively the spin states of an electron trapped above the surface of liquid helium. The electron-on-helium qubit was proposed as the basic element for building quantum computers with electrons on helium by Platzman and Dykman in 1999. 

References

  1. Wigner, E. (1934). "On the Interaction of Electrons in Metals". Physical Review . 46 (11): 1002–1011. Bibcode:1934PhRv...46.1002W. doi:10.1103/PhysRev.46.1002.
  2. Wigner, E. P. (1938). "Effects of the electron interaction on the energy levels of electrons in metals". Transactions of the Faraday Society. 34: 678. doi:10.1039/TF9383400678.
  3. Radzvilavicius, A.; Anisimovas, E. (2011). "Topological defect motifs in two-dimensional Coulomb clusters". Journal of Physics: Condensed Matter . 23 (38): 385301. arXiv: 1204.6028 . Bibcode:2011JPCM...23L5301R. doi:10.1088/0953-8984/23/38/385301. PMID   21891854. S2CID   22775297.
  4. Jenö, S. (2010). Fundamentals of the Physics of Solids: Volume 3-Normal, Broken-Symmetry, and Correlated Systems. Vol. 3. Springer Science & Business Media.
  5. Ceperley, D. M. (1980). "Ground State of the Electron Gas by a Stochastic Method". Physical Review Letters . 45 (7): 566–569. Bibcode:1980PhRvL..45..566C. doi:10.1103/PhysRevLett.45.566. S2CID   55620379.
  6. Drummond, N.; Radnai, Z.; Trail, J.; Towler, M.; Needs, R. (2004). "Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals". Physical Review B . 69 (8): 085116. arXiv: 0801.0377 . Bibcode:2004PhRvB..69h5116D. doi:10.1103/PhysRevB.69.085116. S2CID   18176116.
  7. Tanatar, B.; Ceperley, D. (1989). "Ground state of the two-dimensional electron gas". Physical Review B . 39 (8): 5005–5016. Bibcode:1989PhRvB..39.5005T. doi:10.1103/PhysRevB.39.5005. PMID   9948889.
  8. Rapisarda, F.; Senatore, G. (1996). "Diffusion Monte Carlo study of electrons in two-dimensional layers". Australian Journal of Physics . 49: 161. Bibcode:1996AuJPh..49..161R. doi: 10.1071/PH960161 .
  9. Drummond, N.D.; Needs, R.J. (2009). "Phase diagram of the low-density two-dimensional homogeneous electron gas". Physical Review Letters . 102 (12): 126402. arXiv: 1002.2101 . Bibcode:2009PhRvL.102l6402D. doi:10.1103/PhysRevLett.102.126402. PMID   19392300. S2CID   35125378.
  10. Dubin, D. H. E.; O'neil, T. M. (1999). "Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states)". Reviews of Modern Physics . 71 (1): 87–172. Bibcode:1999RvMP...71...87D. doi:10.1103/RevModPhys.71.87. S2CID   121503874.
  11. Imai, Y.; Kawakami, N.; Tsunetsugu, H. (2003). "Low-energy excitations of the Hubbard model on the Kagomé lattice". Physical Review B . 68 (19): 195103. arXiv: cond-mat/0305144 . Bibcode:2003PhRvB..68s5103I. doi:10.1103/PhysRevB.68.195103. S2CID   119104323.
  12. Yannouleas, C.; Landman, U. (2007). "Symmetry breaking and quantum correlations in finite systems: studies of quantum dots and ultracold Bose gases and related nuclear and chemical methods". Reports on Progress in Physics . 70 (12): 2067–2148. arXiv: 0711.0637 . Bibcode:2007RPPh...70.2067Y. doi:10.1088/0034-4885/70/12/R02. PMID   34996294. S2CID   13566409.
  13. Andrei, E. Y.; Deville, G.; Glattli, D. C.; Williams, F. I. B.; Paris, E.; Etienne, B. (1988). "Observation of a magnetically induced Wigner solid". Physical Review Letters. 60 (26): 2765–2768. Bibcode:1988PhRvL..60.2765A. doi:10.1103/PhysRevLett.60.2765. PMID   10038446.
  14. Jain, J.K. (2007). Composite Fermions. Cambridge, England: Cambridge University Press.
  15. Zhu, H.; Chen, Y.P.; Jiang, P.; Engel, L.W.; Tsui, D.C.; Pfeiffer, L.N.; West, K.W. (2010). "Observation of a pinning mode in a Wigner solid with ν=1/3 fractional quantum Hall excitations". Physical Review Letters. 105 (12): 126803. arXiv: 1006.2335 . Bibcode:2010PhRvL.105l6803Z. doi:10.1103/PhysRevLett.105.126803. PMID   20867666. S2CID   39310388.
  16. Yannouleas, C.; Landman, U. (2011). "Unified microscopic approach to the interplay of pinned-Wigner-solid and liquid behavior of the lowest-Landau-level states in the neighborhood of ν=1/3". Physical Review B . 84 (16): 165327. arXiv: 1111.0019 . Bibcode:2011PhRvB..84p5327Y. doi:10.1103/PhysRevB.84.165327. S2CID   16425687.
  17. Bylander, Jonas; Duty, Tim; Delsing, Per (2005). "Current measurement by real-time counting of single electrons". Nature. 434 (7031): 361–364. arXiv: cond-mat/0411420 . Bibcode:2005Natur.434..361B. doi:10.1038/nature03375. PMID   15772655. S2CID   11689132. (see also the Nature review article here
  18. Hew, W.K.; Thomas, K.J.; Pepper, M.; Farrer, I.; Anderson, D.; Jones, G.A.C.; Ritchie, D.A. (2009). "Incipient Formation of an Electron Lattice in a Weakly Confined Quantum Wire". Physical Review Letters. 102 (5): 056804. arXiv: 0907.1634 . Bibcode:2009PhRvL.102e6804H. doi:10.1103/PhysRevLett.102.056804. PMID   19257536. S2CID   8675868.
  19. Meyer, J. S.; Matveev, K. A. (January 2009). "Wigner Crystal Physics in Quantum Wires". J. Phys.: Condens. Matter. 21 (2): 023203. arXiv: 0808.2076 . Bibcode:2009JPCM...21b3203M. doi:10.1088/0953-8984/21/2/023203. PMID   21813970. S2CID   9790470.
  20. Klironomos, A. D.; Meyer, J. S.; Matveev, K. A. (May 2006). "Spontaneous Spin Polarization in Quantum Wires". Europhysics Letters. 74 (4): 679–685. arXiv: cond-mat/0507387 . Bibcode:2006EL.....74..679K. doi:10.1209/epl/i2006-10024-x. S2CID   118968227.
  21. Ho, Sheng-Chin; Chang, Heng-Jian; Chang, Chia-Hua; Lo, Shun-Tsung; Creeth, Graham; Kumar, Sanjeev; Farrer, Ian; Ritchie, David; Griffiths, Jonathan; Jones, Geraint; Pepper, Michael; Chen, Tse-Ming (6 September 2018). "Imaging the Zigzag Wigner Crystal in Confinement-Tunable Quantum Wires". Physical Review Letters. 121 (10): 106801. arXiv: 1804.08602 . Bibcode:2018PhRvL.121j6801H. doi:10.1103/PhysRevLett.121.106801. PMID   30240231. S2CID   206316690.
  22. Shapir, I.; Hamo, A.; Pecker, S.; Moca, C. P.; Legeza, Ö; Zarand, G.; Ilani, S. (2019-05-31). "Imaging the electronic Wigner crystal in one dimension". Science. 364 (6443): 870–875. arXiv: 1803.08523 . Bibcode:2019Sci...364..870S. doi:10.1126/science.aat0905. ISSN   0036-8075. PMID   31147516. S2CID   171092729.
  23. Tsui, Yen-Chen; He, Minhao; Hu, Yuwen; Lake, Ethan; Wang, Taige; Watanabe, Kenji; Taniguchi, Takashi; Zaletel, Michael P.; Yazdani, Ali (2024-04-11). "Direct observation of a magnetic-field-induced Wigner crystal". Nature. 628 (8007): 287–292. arXiv: 2312.11632 . doi:10.1038/s41586-024-07212-7. ISSN   0028-0836.
  24. Starr, Michelle (2024-04-11). "Physicists Finally Capture Mysterious Wigner Crystal After 90 Years". ScienceAlert. Retrieved 2024-04-13.
  25. Vodeb, Jaka; Kabanov, Viktor; Gerasimenko, Yaroslav; Venturini, Rok; Ravnik, Jan; van Midden, Marion; Zupanic, Erik; Sutar, Petra; Mihailovic, Dragan (2019). "Configurational electronic states in layered transition metaldichalcogenides". New Journal of Physics. 21 (8): 083001–083015. arXiv: 1901.02232 . Bibcode:2019NJPh...21h3001V. doi: 10.1088/1367-2630/ab3057 .
  26. Li, Hongyuan; Li, Shaowei; Regan, Emma C.; Wang, Danqing; Zhao, Wenyu; Kahn, Salman; Yumigeta, Kentaro; Blei, Mark; Taniguchi, Takashi; Watanabe, Kenji; Tongay, Sefaattin; Zettl, Alex; Crommie, Michael F.; Wang, Feng (September 2021). "Imaging two-dimensional generalized Wigner crystals". Nature. 597 (7878): 650–654. Bibcode:2021Natur.597..650L. doi:10.1038/s41586-021-03874-9. ISSN   1476-4687. PMID   34588665. S2CID   238228974.
  27. Rubio-Verdú, Carmen (September 2021). "Electron crystals come under the microscope". Nature. 597 (7878): 640–641. Bibcode:2021Natur.597..640R. doi:10.1038/d41586-021-02573-9. S2CID   238230444.
  28. Irving, Michael (July 5, 2021). "Scientists create solid crystal form of electrons in the lab". New Atlas. Retrieved 2021-07-05.
  29. Smoleński, Tomasz; Dolgirev, Pavel E.; Kuhlenkamp, Clemens; Popert, Alexander; Shimazaki, Yuya; Back, Patrick; Lu, Xiaobo; Kroner, Martin; Watanabe, Kenji; Taniguchi, Takashi; Esterlis, Ilya (July 2021). "Signatures of Wigner crystal of electrons in a monolayer semiconductor". Nature. 595 (7865): 53–57. arXiv: 2010.03078 . Bibcode:2021Natur.595...53S. doi:10.1038/s41586-021-03590-4. ISSN   1476-4687. PMID   34194018. S2CID   222177730.
  30. Zhou, You; Sung, Jiho; Brutschea, Elise; et al. (2021). "Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure". Nature. 595 (7865): 48–52. arXiv: 2010.03037 . Bibcode:2021Natur.595...48Z. doi:10.1038/s41586-021-03560-w. ISSN   0028-0836. PMID   34194017. S2CID   222177721 . Retrieved 2021-07-12.
  31. "Multi-institutional Research Team Documents Quantum Melting of Wigner Crystals". Department of Materials Science and Engineering. 2021-06-29. Retrieved 2021-07-12.