16-cell honeycomb honeycomb

Last updated
16-cell honeycomb honeycomb
(No image)
Type Hyperbolic regular honeycomb
Schläfli symbol {3,3,4,3,3}
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-faces Demitesseractic tetra hc.png {3,3,4,3}
4-faces Schlegel wireframe 16-cell.png {3,3,4}
Cells Tetrahedron.png {3,3}
Faces Regular polygon 3 annotated.svg {3}
Cell figure Regular polygon 3 annotated.svg {3}
Face figure Tetrahedron.png {3,3}
Edge figure Schlegel wireframe 8-cell.png {4,3,3}
Vertex figure Icositetrachoronic tetracomb.png {3,4,3,3}
Dualself-dual
Coxeter group X5, [3,3,4,3,3]
PropertiesRegular

In the geometry of hyperbolic 5-space, the 16-cell honeycomb honeycomb is one of five paracompact regular space-filling tessellations (or honeycombs). It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. With Schläfli symbol {3,3,4,3,3}, it has three 16-cell honeycombs around each cell. It is self-dual.

Geometry branch of mathematics that measures the shape, size and position of objects

Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer.

Hyperbolic space

In mathematics, a hyperbolic space is a homogeneous space that has a constant negative curvature, where in this case the curvature is the sectional curvature. It is hyperbolic geometry in more than 2 dimensions, and is distinguished from Euclidean spaces with zero curvature that define the Euclidean geometry, and elliptic geometry that have a constant positive curvature.

Regular polytope polytope whose symmetry group acts transitively on its flags

In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or j-faces — cells, faces and so on — are also transitive on the symmetries of the polytope, and are regular polytopes of dimension ≤ n.

Contents

It is related to the regular Euclidean 4-space 16-cell honeycomb, {3,3,4,3}.

16-cell honeycomb one of three regular space-filling tessellation in Euclidean 4-space

In four-dimensional Euclidean geometry, the 16-cell honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {3,3,4,3}, and constructed by a 4-dimensional packing of 16-cell facets, three around every face.

See also

Related Research Articles

Order-6 tetrahedral honeycomb

In the geometry of hyperbolic 3-space, the order-6 tetrahedral honeycomb is a paracompact regular space-filling tessellation. It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. With Schläfli symbol {3,3,6}. It has six tetrahedra {3,3} around each edge. All vertices are ideal vertices with infinitely many tetrahedra existing around each ideal vertex in a triangular tiling vertex arrangement.

Order-4 hexagonal tiling honeycomb

In the field of hyperbolic geometry, the order-4 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is called paracompact because it has infinite cells. Each cell consists of a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

Order-6 cubic honeycomb

The order-6 cubic honeycomb is a paracompact regular space-filling tessellations in hyperbolic 3-space. It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. With Schläfli symbol {4,3,6}, it has six cubes meeting along each edge. Its vertex figure is an infinite triangular tiling. It is dual is the order-4 hexagonal tiling honeycomb.

Order-6 dodecahedral honeycomb

The order-6 dodecahedral honeycomb is one of 11 paracompact regular honeycombs in hyperbolic 3-space. It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. It has Schläfli symbol {5,3,6}, being composed of dodecahedral cells, each edge of the honeycomb is surrounded by six dodecahedra. Each vertex is ideal and surrounded by infinitely many dodecahedra with a vertex figure as a triangular tiling.

Order-6 hexagonal tiling honeycomb

In the field of hyperbolic geometry, the order-6 hexagonal tiling honeycomb arises one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is called paracompact because it has infinite cells. Each cell consists of a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

Square tiling honeycomb

In the geometry of hyperbolic 3-space, the square tiling honeycomb, is one of 11 paracompact regular honeycombs. It is called paracompact because it has infinite cells, whose vertices exist on horospheres and converge to a single ideal point at infinity. Given by Schläfli symbol {4,4,3}, has three square tilings, {4,4} around each edge, and 6 square tilings around each vertex in a cubic {4,3} vertex figure.

Order-4 square tiling honeycomb

In the geometry of hyperbolic 3-space, the order-4 square tiling honeycomb, is one of 11 paracompact regular honeycombs. It is called paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {4,4,4}, has four square tilings, {4,4} around each edge, and infinite square tilings around each vertex in a square tiling {4,4} vertex arrangement.

Order-4 octahedral honeycomb

In the geometry of hyperbolic 3-space, the order-4 octahedral honeycomb is a regular paracompact honeycomb. It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {3,4,4}, it has four octahedra, {3,4} around each edge, and infinite octahedra around each vertex in a square tiling {4,4} vertex arrangement.

In the geometry of hyperbolic 4-space, the cubic honeycomb honeycomb is one of two paracompact regular space-filling tessellations. It is called paracompact because it has infinite facets, whose vertices exist on 3-horospheres and converge to a single ideal point at infinity. With Schläfli symbol {4,3,4,3}, it has three cubic honeycombs around each face, and with a {3,4,3} vertex figure. It is dual to the order-4 24-cell honeycomb.

In the geometry of hyperbolic 4-space, the order-4 24-cell honeycomb is one of two paracompact regular space-filling tessellations. It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. With Schläfli symbol {3,4,3,4}, it has four 24-cells around each face. It is dual to the cubic honeycomb honeycomb.

In the geometry of hyperbolic 3-space, the octahedron-hexagonal tiling honeycomb is a paracompact uniform honeycomb, constructed from octahedron, hexagonal tiling, and trihexagonal tiling cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.

In the geometry of hyperbolic 3-space, the hexagonal tiling-triangular tiling honeycomb is a paracompact uniform honeycomb, constructed from triangular tiling, hexagonal tiling, and trihexagonal tiling cells, in a rhombitrihexagonal tiling vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.

In the geometry of hyperbolic 3-space, the cubic-triangular tiling honeycomb is a paracompact uniform honeycomb, constructed from cube, triangular tiling, and cuboctahedron cells, in a rhombitrihexagonal tiling vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.

In the geometry of hyperbolic 3-space, the tetrahedral-triangular tiling honeycomb is a paracompact uniform honeycomb, constructed from triangular tiling, tetrahedron, and octahedron cells, in a icosidodecahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.

In the geometry of hyperbolic 3-space, the cubic-square tiling honeycomb is a paracompact uniform honeycomb, constructed from cube and square tiling cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.

In the geometry of hyperbolic 3-space, the tetrahedral-square tiling honeycomb is a paracompact uniform honeycomb, constructed from tetrahedron, cuboctahedron and square tiling cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.

In the geometry of hyperbolic 5-space, the 5-orthoplex honeycomb is one of five paracompact regular space-filling tessellations. It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. With Schläfli symbol {3,3,3,4,3}, it has three 5-orthoplexes around each cell. It is dual to the 24-cell honeycomb honeycomb.

In the geometry of hyperbolic 5-space, the 24-cell honeycomb honeycomb is one of five paracompact regular space-filling tessellations. It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. With Schläfli symbol {3,4,3,3,3}, it has three 24-cell honeycombs around each cell. It is dual to the 5-orthoplex honeycomb.

In the geometry of hyperbolic 5-space, the order-4 24-cell honeycomb honeycomb is one of five paracompact regular space-filling tessellations. It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. With Schläfli symbol {3,4,3,3,4}, it has four 24-cell honeycombs around each cell. It is dual to the tesseractic honeycomb honeycomb.

In the geometry of hyperbolic 5-space, the tesseractic honeycomb honeycomb is one of five paracompact regular space-filling tessellations. It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. With Schläfli symbol {4,3,3,4,3}, it has three tesseractic honeycombs around each cell. It is dual to the order-4 24-cell honeycomb honeycomb.

References

<i>Regular Polytopes</i> (book) book about mathematical geometry

Regular Polytopes is a mathematical geometry book written by Canadian mathematician Harold Scott MacDonald Coxeter. Originally published in 1947, the book was updated and republished in 1963 and 1973.

International Standard Book Number Unique numeric book identifier

The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.