A. I. Sabra

Last updated
A. I. Sabra
عبد الحميد إبراهيم صبرة
Born
Abdelhamid Ibrahim Sabra

(1924-07-08)July 8, 1924
DiedDecember 18, 2013(2013-12-18) (aged 89)
NationalityEgyptian
Other namesBashi
Citizenship Egypt, United States of America
Alma mater
Children Adam Sabra
Awards George Sarton Medal (2005)
Scientific career
Fields History of science
Thesis Theories Of Light from Descartes To Newton (1955)
Doctoral advisor Karl Popper

Abdelhamid Ibrahim Sabra (1924-2013) was a professor of the history of science specializing in the history of optics and science in medieval Islam. He died December 18, 2013. Sabra provided English translation and commentary for Books I-III [1] of Ibn al-Haytham's seven book Kitab al-Manazir ( Book of Optics ), written in Arabic in the 11th century.

Contents

Sabra received his undergraduate degree at the University of Alexandria. He then studied philosophy of science with Karl Popper at the University of London, where he received a PhD in 1955 for a thesis on optics in the 17th century. He taught at the University of Alexandria 1955–62, at the Warburg Institute 1962–72, and at Harvard University from 1972 until he retired in 1996.

In his article on "The Appropriation and Subsequent Naturalization of Greek Science in Medieval Islam", he argued, against the theories of Pierre Duhem, that Islamic cultures did not passively receive and preserve ancient Greek science, but actively "appropriated" and modified it. [2]

In 2005 he was awarded the Sarton Medal for lifetime achievement in the history of science by the History of Science Society. [3]

Select publications

Related Research Articles

<span class="mw-page-title-main">Ibn al-Haytham</span> Arab physicist, mathematician and astronomer (c. 965 – c. 1040)

Ḥasan Ibn al-Haytham was a medieval mathematician, astronomer, and physicist of the Islamic Golden Age from present-day Iraq. Referred to as "the father of modern optics", he made significant contributions to the principles of optics and visual perception in particular. His most influential work is titled Kitāb al-Manāẓir, written during 1011–1021, which survived in a Latin edition. The works of Alhazen were frequently cited during the scientific revolution by Isaac Newton, Johannes Kepler, Christiaan Huygens, and Galileo Galilei.

<span class="mw-page-title-main">Islamic philosophy</span> Philosophical tradition in Muslim culture

Islamic philosophy is philosophy that emerges from the Islamic tradition. Two terms traditionally used in the Islamic world are sometimes translated as philosophy—falsafa, which refers to philosophy as well as logic, mathematics, and physics; and Kalam, which refers to a rationalist form of Scholastic Islamic theology which includes the schools of Maturidiyah, Ashaira and Mu'tazila.

Early Islamic philosophy or classical Islamic philosophy is a period of intense philosophical development beginning in the 2nd century AH of the Islamic calendar and lasting until the 6th century AH. The period is known as the Islamic Golden Age, and the achievements of this period had a crucial influence in the development of modern philosophy and science. For Renaissance Europe, "Muslim maritime, agricultural, and technological innovations, as well as much East Asian technology via the Muslim world, made their way to western Europe in one of the largest technology transfers in world history.” This period starts with al-Kindi in the 9th century and ends with Averroes at the end of 12th century. The death of Averroes effectively marks the end of a particular discipline of Islamic philosophy usually called the Peripatetic Arabic School, and philosophical activity declined significantly in Western Islamic countries, namely in Islamic Spain and North Africa, though it persisted for much longer in the Eastern countries, in particular Persia and India where several schools of philosophy continued to flourish: Avicennism, Illuminationist philosophy, Mystical philosophy, and Transcendent theosophy.

<span class="mw-page-title-main">Science in the medieval Islamic world</span> Science developed and practised during the Islamic Golden Age

Science in the medieval Islamic world was the science developed and practised during the Islamic Golden Age under the Umayyads of Córdoba, the Abbadids of Seville, the Samanids, the Ziyarids, the Buyids in Persia, the Abbasid Caliphate and beyond, spanning the period roughly between 786 and 1258. Islamic scientific achievements encompassed a wide range of subject areas, especially astronomy, mathematics, and medicine. Other subjects of scientific inquiry included alchemy and chemistry, botany and agronomy, geography and cartography, ophthalmology, pharmacology, physics, and zoology.

<span class="mw-page-title-main">Vitello</span> Polish scholar

Vitello was a friar, theologian, natural philosopher and an important figure in the history of philosophy in Poland.

<span class="mw-page-title-main">Kamāl al-Dīn al-Fārisī</span> Persian mathematician (1265–1318)

Kamal al-Din Hasan ibn Ali ibn Hasan al-Farisi or Abu Hasan Muhammad ibn Hasan ) was a Persian Muslim scientist. He made two major contributions to science, one on optics, the other on number theory. Farisi was a pupil of the astronomer and mathematician Qutb al-Din al-Shirazi, who in turn was a pupil of Nasir al-Din Tusi.

<span class="mw-page-title-main">Catoptrics</span> Study of the relationship between light and mirrors

Catoptrics deals with the phenomena of reflected light and image-forming optical systems using mirrors. A catoptric system is also called a catopter (catoptre).

<span class="mw-page-title-main">Ibn Sahl (mathematician)</span> Mathematician (c. 940-1000)

Ibn Sahl was a Persian Muslim mathematician and physicist of the Islamic Golden Age, associated with the Buyid court of Baghdad. Nothing in his name allows us to glimpse his country of origin.

<span class="mw-page-title-main">Newton disc</span> Coloured disc that appears grey when rotated

The Newton disc, also known as the disappearing colour disc, is a well-known physics experiment with a rotating disc with segments in different colours appearing as white when it spun rapidy about its axis.

<span class="mw-page-title-main">History of optics</span>

Optics began with the development of lenses by the ancient Egyptians and Mesopotamians, followed by theories on light and vision developed by ancient Greek philosophers, and the development of geometrical optics in the Greco-Roman world. The word optics is derived from the Greek term τα ὀπτικά meaning 'appearance, look'. Optics was significantly reformed by the developments in the medieval Islamic world, such as the beginnings of physical and physiological optics, and then significantly advanced in early modern Europe, where diffractive optics began. These earlier studies on optics are now known as "classical optics". The term "modern optics" refers to areas of optical research that largely developed in the 20th century, such as wave optics and quantum optics.

<span class="mw-page-title-main">Astronomy in the medieval Islamic world</span> Period of discovery in the Middle Ages

Medieval Islamic astronomy comprises the astronomical developments made in the Islamic world, particularly during the Islamic Golden Age, and mostly written in the Arabic language. These developments mostly took place in the Middle East, Central Asia, Al-Andalus, and North Africa, and later in the Far East and India. It closely parallels the genesis of other Islamic sciences in its assimilation of foreign material and the amalgamation of the disparate elements of that material to create a science with Islamic characteristics. These included Greek, Sassanid, and Indian works in particular, which were translated and built upon.

<span class="mw-page-title-main">Latin translations of the 12th century</span>

Latin translations of the 12th century were spurred by a major search by European scholars for new learning unavailable in western Europe at the time; their search led them to areas of southern Europe, particularly in central Spain and Sicily, which recently had come under Christian rule following their reconquest in the late 11th century. These areas had been under Muslim rule for a considerable time, and still had substantial Arabic-speaking populations to support their search. The combination of this accumulated knowledge and the substantial numbers of Arabic-speaking scholars there made these areas intellectually attractive, as well as culturally and politically accessible to Latin scholars. A typical story is that of Gerard of Cremona, who is said to have made his way to Toledo, well after its reconquest by Christians in 1085, because he

arrived at a knowledge of each part of [philosophy] according to the study of the Latins, nevertheless, because of his love for the Almagest, which he did not find at all amongst the Latins, he made his way to Toledo, where seeing an abundance of books in Arabic on every subject, and pitying the poverty he had experienced among the Latins concerning these subjects, out of his desire to translate he thoroughly learnt the Arabic language....

Islamic cosmology is the cosmology of Islamic societies. It is mainly derived from the Qur'an, Hadith, Sunnah, and current Islamic as well as other pre-Islamic sources. The Qur'an itself mentions seven heavens.

<i>Book of Optics</i> 11th century treatise on optics by Ibn al-Haytham

The Book of Optics is a seven-volume treatise on optics and other fields of study composed by the medieval Arab scholar Ibn al-Haytham, known in the West as Alhazen or Alhacen.

<span class="mw-page-title-main">Islamic world contributions to Medieval Europe</span> Influence of Islamic civilisation on Medieval Europe

During the High Middle Ages, the Islamic world was at its cultural peak, supplying information and ideas to Europe, via Al-Andalus, Sicily and the Crusader kingdoms in the Levant. These included Latin translations of the Greek Classics and of Arabic texts in astronomy, mathematics, science, and medicine. Translation of Arabic philosophical texts into Latin "led to the transformation of almost all philosophical disciplines in the medieval Latin world", with a particularly strong influence of Muslim philosophers being felt in natural philosophy, psychology and metaphysics. Other contributions included technological and scientific innovations via the Silk Road, including Chinese inventions such as paper, compass and gunpowder.

The natural sciences saw various advancements during the Golden Age of Islam, adding a number of innovations to the Transmission of the Classics. During this period, Islamic theology was encouraging of thinkers to find knowledge. Thinkers from this period included Al-Farabi, Abu Bishr Matta, Ibn Sina, al-Hassan Ibn al-Haytham and Ibn Bajjah. These works and the important commentaries on them were the wellspring of science during the medieval period. They were translated into Arabic, the lingua franca of this period.

<span class="mw-page-title-main">Islamic Golden Age</span> Period of cultural flourishing in the 8th to 13th centuries

The Islamic Golden Age was a period of scientific, economic and cultural flourishing in the history of Islam, traditionally dated from the 8th century to the 13th century.

Roshdi Rashed, born in Cairo in 1936, is a mathematician, philosopher and historian of science, whose work focuses largely on mathematics and physics of the medieval Arab world. His work explores and illuminates the unrecognized Arab scientific tradition, being one of the first historians to study in detail the ancient and medieval texts, their journey through the Eastern schools and courses, their immense contributions to Western science, particularly in regarding the development of algebra and the first formalization of physics.

<i>Optics</i> (Ptolemy) Work on geometrical optics by Claudius Ptolemy

Ptolemy's Optics is a 2nd-century book on geometrical optics, dealing with reflection, refraction, and colour. The book was most likely written late in Ptolemy's life, after the Almagest, during the 160s. The work is of great importance in the early history of optics. The Greek text has been lost completely. Fragments of the work survive only in the form of a Latin translation, prepared around 1154 by Eugene of Palermo, based on an Arabic translation which was presumably based on the Greek original. Both the Arabic and the Greek texts are lost entirely, and the Latin text is "badly mangled". The Latin text was edited by Albert Lejeune in 1956. The 1996 English translation by Mark Smith is based on Lejeune's Latin text.

References

  1. Sabra, A. I. (1989). The Optics of Ibn al-Haytham. Books I–II–III: On Direct Vision. London: The Warburg Institute, University of London. ISBN   0-85481-072-2.
    • Sabra also produced an Arabic edition of books IV-V: The Optics of Ibn al-Haytham. IV-V: On Reflection and Images Seen by Reflection. Two volumes: I: Text, Introductions, Concordance Tables; II: Apparatus, Diagrams, Appendices, Analytical Index, Plates. 760pp. Kuwait: The National Council for Culture, Arts and Letters, 2002.
  2. History of Science 25, pp. 223–43
  3. "The Society: The George Sarton Medal". Archived from the original on September 22, 2010. Retrieved January 29, 2011.