AKAP2 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | AKAP2 , AKAP-2, AKAPKL, PRKA2, A-kinase anchoring protein 2, MISP2 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | MGI: 1306795 HomoloGene: 100376 GeneCards: AKAP2 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
A-kinase anchor protein 2 is an enzyme that in humans is encoded by the AKAP2 gene. [3] [4] It is likely involved in establishing polarity in signaling systems or in integrating PKA-RII isoforms with downstream effectors to capture, amplify and focus diffuse, trans-cellular signals carried by cAMP. [5] Malfunction of AKAP2 is associated with Kallmann Syndrome.
AKAP2 is widely recognized as an anchoring protein which has been found to be expressed in epithelial cells for organs such as the kidneys or the lungs. [5] However, it was not until relatively recently that AKAP2 was found to contribute to certain cellular processes that are involved in providing cardioprotective properties for infarcted hearts.
Following a myocardial infarction, the heart tissue becomes damaged due to maladaptive cardiac remodeling and death to the cardiac myocytes affected. Within cardiac myocytes, AKAP2 is involved in specific signaling complexes which get upregulated to help promote further development of new blood vessels after a myocardial infarction and also prevent apoptosis of the cardiac myocytes affected. Further, if the AKAP2 gene is knocked out in experiments involving the cardiac myocytes of adult mice, this results in expansion of the affected infarcted myocardial tissue contributing to worsened cardiac function (i.e. lower ejection fraction and increased size of the left ventricle). Additionally, deleting the AKAP2 gene prevents the induction of Vegfa which further reduces the number of new blood vessels created after an infarction. [8]
When a myocardial infarction occurs, the AKAP2 in stressed cardiac myocytes forms a signaling complex with PKA and the steroid receptor co-activator 3 (Src3). This transcriptional complex, known as the AKAP2/PKA/Src3 complex, helps upregulate the genes involved in cardioprotective properties such as angiogenesis and anti-apoptosis. Being able to identify AKAP2's role in complexes such as these can prove to be beneficial in aiding future research for medical and pharmacological interventions following the occurrence of myocardial infarctions. [9]
AKAP2 is involved in playing a role in maintaining proper ocular lens transparency. A normal ocular lens is typically almost completely transparent, but decline in ocular lens transparency contributes to the medical condition known as cataracts. [10] In fact, approximately 95 million humans are affected by cataracts worldwide, which is the leading cause of blindness. [11] This clouding of the ocular lens tissue can occur due to circulation malfunctions involving vital water and nutrients. [12] It is important to consider the physiology of the internal circulation system involving biochemical processes for membrane channel and transporter proteins. [13]
One of the most essential elements of this biochemical process involves the aquaporin-0 (AQP0) water channel. The AQP0 channel's primary function for ocular lenses is to maintain strongly regulated water permeability for proper lens transparency. [13] Several cellular and biochemical pathways have been studied, but an essential discovery involves the products of A-kinase anchoring protein 2 gene (AKAP2). The products of this gene specifically allow AKAP2 to form a key complex with the aquaporin-0 water channel and protein kinase A (PKA). By AKAP2 anchoring PKA with AQP0, this allows protein kinase A to undergo phosphorylation of serine 235 within the CaM binding domain of AQP0. [12] This leads to a series of cascading events and interactions caused by the negative charge brought upon by the phosphorylation of serine 235, which then properly allows water to enter through the AQP0 channel. In studies completed in which mouse lenses were isolated where the AKAP2 anchoring to PKA was disrupted, this led to the formation of cortical cataracts and inherent damage to the cells located inside the ocular lens. [14] This further supports the necessity of maintaining the homeostatic mechanism of the AKAP2-AQP0 complex being properly anchored to PKA to conserve ocular lens transparency.
AKAP2 has also been found to play an influential part in modulating the formation of the skeletal system, although until now its specific impact on chondrocyte growth and differentiation had remained relatively unclear. [15] In recent in vitro research studies, the role of AKAP2 was investigated by isolating human growth plate chondrocytes from the tissues of growth plate cartilages. Certain growth plate chondrocytes in this study were identified via aggrecan expression and then analyzed through flow cytometry. This research study found that when AKAP2 was overexpressed, it led to increased generation and differentiation of growth plate chondrocytes via increased signaling from the protein levels of p-extracellular regulated protein kinases (ERK) 1/2. [16] Additionally, overexpression of AKAP2 also led to increased extracellular matrix production. On the other hand, when AKAP2 gene expression was silenced, the researchers witnessed decreased growth and differentiation of growth plate chondrocytes along with decreased extracellular matrix synthesis.
Overall, the AKAP2 gene which forms AKAP2, is hypothesized to directly be involved in playing an important role in the formation of the skeletal system and more specifically with chondrocyte function. The AKAP2 gene has been found to have an impact on the growth and differentiation of growth plate chondrocytes through the signaling of ERK 1/2. In regards to the medical condition adolescent idiopathic scoliosis, otherwise known as AIS, it has been reported that mutations of AKAP2 may lead to this condition. It is important to understand the crucial role of AKAP2 on growth plate chondrocytes and whether targeting this specific gene could result in possible treatments for patients with AIS in the future.
Ovarian cancer is the eighth most common occurring cancer in women and has been found to have a low survival rate once diagnosed. Unfortunately, the 5-year survival rate remains below 10% for ovarian cancer despite significant research into diagnosis and treatment. [17] Currently, there is a greater push for more research into understanding various biochemical mechanisms involved in this malignancy for future treatments.
In the past few years, the role of AKAP2 protein has been studied in ovarian cancer. A research study conducted via quantitative polymerase chain reaction (qPCR) on the mRNA levels of AKAP2 in ovarian tissue cells was found to show levels of AKAP2 were elevated in patients with ovarian cancer. Crystal violet and Boyden chamber assays were specifically used to study the effects of AKAP2 on the development and metastasis of ovarian cancer cells. This research showed that increased levels of AKAP2 led to more proliferation and spreading of the cancer cells and when the AKAP2 gene was muted, it led to a reduction of the ovarian cancer cells. More specifically, it appears that the increased levels of AKAP2 are possibly a result from the activation of β-catenin/ TCF signaling. [18] Overall, AKAP2 plays a significant part in upregulating malignant proliferation and dissemination of ovarian cancer and could possibly serve as a possible drug target for cancer treatment.
Cyclic adenosine monophosphate is a second messenger, or cellular signal occurring within cells, that is important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transduction in many different organisms, conveying the cAMP-dependent pathway.
In cell biology, protein kinase A (PKA) is a family of serine-threonine kinase whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase. PKA has several functions in the cell, including regulation of glycogen, sugar, and lipid metabolism. It should not be confused with 5'-AMP-activated protein kinase.
Protein kinase B (PKB), also known as Akt, is the collective name of a set of three serine/threonine-specific protein kinases that play key roles in multiple cellular processes such as glucose metabolism, apoptosis, cell proliferation, transcription, and cell migration.
cGMP-dependent protein kinase or protein kinase G (PKG) is a serine/threonine-specific protein kinase that is activated by cGMP. It phosphorylates a number of biologically important targets and is implicated in the regulation of smooth muscle relaxation, platelet function, sperm metabolism, cell division, and nucleic acid synthesis.
Nucleoside-diphosphate kinases are enzymes that catalyze the exchange of terminal phosphate between different nucleoside diphosphates (NDP) and triphosphates (NTP) in a reversible manner to produce nucleotide triphosphates. Many NDP serve as acceptor while NTP are donors of phosphate group. The general reaction via ping-pong mechanism is as follows: XDP + YTP ←→ XTP + YDP. NDPK activities maintain an equilibrium between the concentrations of different nucleoside triphosphates such as, for example, when guanosine triphosphate (GTP) produced in the citric acid (Krebs) cycle is converted to adenosine triphosphate (ATP). Other activities include cell proliferation, differentiation and development, signal transduction, G protein-coupled receptor, endocytosis, and gene expression.
Protein kinase C alpha (PKCα) is an enzyme that in humans is encoded by the PRKCA gene.
Neuregulin 1, or NRG1, is a gene of the epidermal growth factor family that in humans is encoded by the NRG1 gene. NRG1 is one of four proteins in the neuregulin family that act on the EGFR family of receptors. Neuregulin 1 is produced in numerous isoforms by alternative splicing, which allows it to perform a wide variety of functions. It is essential for the normal development of the nervous system and the heart.
Mitogen-activated protein kinase 14, also called p38-α, is an enzyme that in humans is encoded by the MAPK14 gene.
The catalytic subunit α of protein kinase A is a key regulatory enzyme that in humans is encoded by the PRKACA gene. This enzyme is responsible for phosphorylating other proteins and substrates, changing their activity. Protein kinase A catalytic subunit is a member of the AGC kinase family, and contributes to the control of cellular processes that include glucose metabolism, cell division, and contextual memory. PKA Cα is part of a larger protein complex that is responsible for controlling when and where proteins are phosphorylated. Defective regulation of PKA holoenzyme activity has been linked to the progression of cardiovascular disease, certain endocrine disorders and cancers.
Troponin I, cardiac muscle is a protein that in humans is encoded by the TNNI3 gene. It is a tissue-specific subtype of troponin I, which in turn is a part of the troponin complex.
Mitogen-activated protein kinase 7 also known as MAP kinase 7 is an enzyme that in humans is encoded by the MAPK7 gene.
cAMP-dependent protein kinase type II-alpha regulatory subunit is an enzyme that in humans is encoded by the PRKAR2A gene.
cAMP-dependent protein kinase catalytic subunit beta is an enzyme that in humans is encoded by the PRKACB gene.
Dual specificity mitogen-activated protein kinase kinase 5 is an enzyme that in humans is encoded by the MAP2K5 gene.
A-kinase anchor protein 3 is an enzyme that in humans is encoded by the AKAP3 gene.
A kinase anchor protein 10, mitochondrial is an enzyme that in humans is encoded by the AKAP10 gene.
A-kinase anchor protein 6 is an enzyme that in humans is encoded by the AKAP6 gene.
Chondromodulin-1 is a protein that in humans is encoded by the LECT1 gene.
The A-kinase anchoring proteins or A-kinase anchor proteins (AKAPs) are a group of structurally diverse proteins, which have the common function of binding to the regulatory subunit of protein kinase A (PKA) and confining the holoenzyme to discrete locations within the cell. At least 20 AKAPs have been cloned. There are at least 50 members, often named after their molecular mass.
Heart-type fatty acid binding protein (hFABP) also known as mammary-derived growth inhibitor is a protein that in humans is encoded by the FABP3 gene.