ATHENA experiment

Last updated
Antiproton decelerator
(AD)
ELENA Extra low energy antiproton ring – further decelerates antiprotons coming from AD
AD experiments
ATHENA AD-1 Antihydrogen production and precision experiments
ATRAP AD-2 Cold antihydrogen for precise laser spectroscopy
ASACUSA AD-3 Atomic spectroscopy and collisions with antiprotons
ACE AD-4 Antiproton cell experiment
ALPHA AD-5 Antihydrogen laser physics apparatus
AEgIS AD-6 Antihydrogen experiment gravity interferometry spectroscopy
GBAR AD-7 Gravitational behaviour of anti-hydrogen at rest
BASE AD-8 Baryon antibaryon symmetry experiment
PUMA AD-9 Antiproton unstable matter annihilation

ATHENA, also known as the AD-1 experiment, was an antimatter research project at the Antiproton Decelerator at CERN, Geneva. In August 2002, it was the first experiment to produce 50,000 low-energy antihydrogen atoms, as reported in Nature . [1] [2] In 2005, ATHENA was disbanded and many of the former members of the research team worked on the subsequent ALPHA experiment and AEgIS experiment.

Contents

Experimental setup

An actual matter-antimatter annihilation due to an atom of antihydrogen in the ATHENA experiment. The antiproton produces four charged pions (yellow) whose positions are given by silicon microstrips (pink) before depositing energy in CsI crystals (yellow cubes). The positron also annihilates to produce back-to-back gamma rays (red). Athena11.jpg
An actual matter-antimatter annihilation due to an atom of antihydrogen in the ATHENA experiment. The antiproton produces four charged pions (yellow) whose positions are given by silicon microstrips (pink) before depositing energy in CsI crystals (yellow cubes). The positron also annihilates to produce back-to-back gamma rays (red).

The ATHENA apparatus comprised four main subsystems: the antiproton catching trap, the positron accumulator, the antiproton/positron mixing trap, and the antihydrogen annihilation detector. All traps in the experiment were variations of the Penning trap, which uses an axial magnetic field to transversely confine the charged particles, and a series of hollow cylindrical electrodes to trap them axially. The catching and mixing traps were adjacent to each other, and coaxial with a 3 T magnetic field from a superconducting solenoid. [3] [4]

The positron accumulator had its own magnetic system, also a solenoid, with a field strength of 0.14 Tesla. A separate cryogenic heat exchanger in the bore of the superconducting magnet cooled the catching and mixing traps to about 15 K. The ATHENA apparatus featured an open, modular design that allowed experimental flexibility, particularly in introducing large numbers of positrons into the apparatus. [5] [6]

Catching trap

The catching trap slowed, trapped, cooled, and accumulated antiprotons. To cool antiprotons, the catching trap was first loaded with 3×108 electrons, which cooled by synchrotron radiation in the 3 Tesla magnetic field. Typically, the AD delivered 2×107 antiprotons having kinetic energy 5.3 MeV and a pulse duration of 200 ns to the experiment at 100 s intervals. The antiprotons were slowed in a thin foil and trapped using a pulsed electric field. The antiprotons lost energy and equilibrated with the cold electrons by Coulomb interaction. The electrons were ejected before mixing the antiprotons with positrons. Each AD shot resulted in about 3×103 cold antiprotons for interaction experiments. [7]

Positron accumulator

The positron accumulator slowed, trapped and accumulated positrons emitted from a radioactive source (1.4×109 Bq 22Na). Accumulation for 300 s yields 1.5×108 positrons, 50% of which were transferred to the mixing trap, where they cooled by synchrotron radiation. [8]

Mixing trap

The mixing trap had the axial potential configuration of a nested Penning trap, which permitted two plasmas of opposite charge to come into contact. In ATHENA, the spheroidal positron cloud could be characterized by exciting and detecting axial plasma oscillations. Typical conditions were: 7×107 stored positrons, a radius of 2 – 2.5 mm, a length of 32 mm, and a maximum density of 2.5×108 cm−3. An antihydrogen annihilation detector was situated coaxially with the mixing region, between the trap outer radius and the magnet bore.

Antihydrogen annihilation detector

The detector was designed to provide unambiguous evidence for antihydrogen production by detecting the temporally and spatially coincident annihilations of the antiproton and positron when a neutral antihydrogen atom escaped the electromagnetic trap and struck the trap electrodes. An antiproton typically annihilates into a few charged or neutral pions. The charged pions were detected by two layers of double-sided, position sensitive, silicon microstrips. The path of a charged particle passing through both layers could be reconstructed, and two or more intersecting tracks allowed determination of the position, or vertex, of the antiproton annihilation. The uncertainty in vertex determination was approximately 4 mm and is dominated by the unmeasured curvature of the charged pions' trajectories in the magnetic field. The temporal coincidence window was approximately 5 microseconds. The solid angle coverage of the interaction region was about 80% of 4π. [9]

A positron annihilating with an electron yields two or three photons. The positron detector, comprising 16 rows each containing 12 scintillating, pure cesium-iodide-crystals, was designed to detect the two-photon events, consisting of two 511 keV photons which are always emitted back-to-back. The energy resolution of the detector was 18% full width half maximum at 511 keV, and the photo-peak detection efficiency for single photons was about 20%. The maximum readout rate of the whole detector was about 40 Hz. Ancillary detectors included large scintillator paddles external to the magnet, and a thin, position sensitive, silicon diode through which the incident antiproton beam passed before entering the catching trap.

To produce antihydrogen atoms, a positron well in the mixing region was filled with about 7×107 positrons and allowed to cool to the ambient temperature (15 kelvin). The nested trap was then formed around the positron well. Next, approximately 104 antiprotons were launched into the mixing region by pulsing the trap from one potential configuration to another. The mixing time is 190 s, after which all particles were dumped and the process repeated. Events triggering the imaging silicon detector (three sides hit in the outer layer) initiated readout of both the silicon and the CsI modules.

Using this method, ATHENA could produce – for the first time – several thousands of cold antihydrogen atoms in 2002. [10]

ATHENA collaboration

Members of the ATHENA collaboration gathered to celebrate the successful production of thousands of antihydrogen atoms, on 20th September 2002 Athena22.jpg
Members of the ATHENA collaboration gathered to celebrate the successful production of thousands of antihydrogen atoms, on 20th September 2002

The ATHENA collaboration comprised the following institutions: [11]

Related Research Articles

<span class="mw-page-title-main">Antimatter</span> Material composed of antiparticles of the corresponding particles of ordinary matter

In modern physics, antimatter is defined as matter composed of the antiparticles of the corresponding particles in "ordinary" matter, and can be thought of as matter with reversed charge, parity, and time, known as CPT reversal. Antimatter occurs in natural processes like cosmic ray collisions and some types of radioactive decay, but only a tiny fraction of these have successfully been bound together in experiments to form antiatoms. Minuscule numbers of antiparticles can be generated at particle accelerators; however, total artificial production has been only a few nanograms. No macroscopic amount of antimatter has ever been assembled due to the extreme cost and difficulty of production and handling.

<span class="mw-page-title-main">Antiparticle</span> Particle with opposite charges

In particle physics, every type of particle is associated with an antiparticle with the same mass but with opposite physical charges. For example, the antiparticle of the electron is the positron. While the electron has a negative electric charge, the positron has a positive electric charge, and is produced naturally in certain types of radioactive decay. The opposite is also true: the antiparticle of the positron is the electron.

<span class="mw-page-title-main">Antimatter rocket</span> Rockets using antimatter as their power source

An antimatter rocket is a proposed class of rockets that use antimatter as their power source. There are several designs that attempt to accomplish this goal. The advantage to this class of rocket is that a large fraction of the rest mass of a matter/antimatter mixture may be converted to energy, allowing antimatter rockets to have a far higher energy density and specific impulse than any other proposed class of rocket.

<span class="mw-page-title-main">Antihydrogen</span> Exotic particle made of an antiproton and positron

Antihydrogen is the antimatter counterpart of hydrogen. Whereas the common hydrogen atom is composed of an electron and proton, the antihydrogen atom is made up of a positron and antiproton. Scientists hope that studying antihydrogen may shed light on the question of why there is more matter than antimatter in the observable universe, known as the baryon asymmetry problem. Antihydrogen is produced artificially in particle accelerators.

<span class="mw-page-title-main">Antiproton</span> Subatomic particle

The antiproton,
p
, is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy.

The Antihydrogen Trap (ATRAP) collaboration at the Antiproton Decelerator facility at CERN, Geneva, is responsible for the AD-2 experiment. It is a continuation of the TRAP collaboration, which started taking data for the PS196 experiment in 1985. The TRAP experiment (PS196) pioneered cold antiprotons, cold positrons, and first made the ingredients of cold antihydrogen to interact. Later ATRAP members pioneered accurate hydrogen spectroscopy and observed the first hot antihydrogen atoms.

<span class="mw-page-title-main">PAMELA detector</span>

PAMELA was a cosmic ray research module attached to an Earth orbiting satellite. PAMELA was launched on 15 June 2006 and was the first satellite-based experiment dedicated to the detection of cosmic rays, with a particular focus on their antimatter component, in the form of positrons and antiprotons. Other objectives included long-term monitoring of the solar modulation of cosmic rays, measurements of energetic particles from the Sun, high-energy particles in Earth's magnetosphere and Jovian electrons. It was also hoped that it may detect evidence of dark matter annihilation. PAMELA operations were terminated in 2016, as were the operations of the host-satellite Resurs-DK1. The experiment was a recognized CERN experiment (RE2B).

<span class="mw-page-title-main">Gravitational interaction of antimatter</span> Theory of gravity on antimatter

The gravitational interaction of antimatter with matter or antimatter has not been observed by physicists. While the consensus among physicists is that gravity is expected to attract both matter and antimatter at the same rate that matter attracts matter, this is not experimentally confirmed.

<span class="mw-page-title-main">PS210 experiment</span> Scientific experiment

The PS210 experiment was the first experiment that led to the observation of antihydrogen atoms produced at the Low Energy Antiproton Ring (LEAR) at CERN in 1995. The antihydrogen atoms were produced in flight and moved at nearly the speed of light. They made unique electrical signals in detectors that destroyed them almost immediately after they formed by matter–antimatter annihilation.

Gerald Gabrielse is an American physicist. He is the Board of Trustees Professor of Physics and Director of the Center for Fundamental Physics at Northwestern University, and Emeritus George Vasmer Leverett Professor of Physics at Harvard University. He is primarily known for his experiments trapping and investigating antimatter, measuring the electron g-factor, and measuring the electron electric dipole moment. He has been described as "a leader in super-precise measurements of fundamental particles and the study of anti-matter."

<span class="mw-page-title-main">Antiproton Decelerator</span> Particle storage ring at CERN, Switzerland

The Antiproton Decelerator (AD) is a storage ring at the CERN laboratory near Geneva. It was built from the Antiproton Collector (AC) to be a successor to the Low Energy Antiproton Ring (LEAR) and started operation in the year 2000. Antiprotons are created by impinging a proton beam from the Proton Synchrotron on a metal target. The AD decelerates the resultant antiprotons to an energy of 5.3 MeV, which are then ejected to one of several connected experiments.

Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA), AD-3, is an experiment at the Antiproton Decelerator (AD) at CERN. The experiment was proposed in 1997, started collecting data in 2002 by using the antiprotons beams from the AD, and will continue in future under the AD and ELENA decelerator facility.

High-precision experiments could reveal small previously unseen differences between the behavior of matter and antimatter. This prospect is appealing to physicists because it may show that nature is not Lorentz symmetric.

<span class="mw-page-title-main">ALPHA experiment</span> Experiment at the Antiproton Decelerator

The Antihydrogen Laser Physics Apparatus (ALPHA), also known as AD-5, is an experiment at the Antiproton Decelerator at CERN, designed to trap neutral antihydrogen in a magnetic trap, and conduct experiments on them. The ultimate goal of this experiment is to test CPT symmetry through comparison of the atomic spectra of hydrogen and antihydrogen. The ALPHA collaboration consists of some former members of the ATHENA collaboration or AD-1 experiment, as well as a number of new members.

AEgIS, AD-6, is an experiment at the Antiproton Decelerator facility at CERN. Its primary goal is to measure directly the effect of Earth's gravitational field on antihydrogen atoms with significant precision. Indirect bounds that assume the validity of, for example, the universality of free fall, the Weak Equivalence Principle or CPT symmetry also in the case of antimatter constrain an anomalous gravitational behavior to a level where only precision measurements can provide answers. Vice versa, antimatter experiments with sufficient precision are essential to validate these fundamental assumptions. AEgIS was originally proposed in 2007. Construction of the main apparatus was completed in 2012. Since 2014, two laser systems with tunable wavelengths and synchronized to the nanosecond for specific atomic excitation have been successfully commissioned.

<span class="mw-page-title-main">GBAR experiment</span> Experiment at the Antiproton Decelerator

GBAR, AD-7 experiment, is a multinational collaboration at the Antiproton Decelerator of CERN.

<span class="mw-page-title-main">Buffer-gas trap</span> Device used to accumulate positrons

The buffer-gas trap (BGT) is a device used to accumulate positrons efficiently while minimizing positron loss due to annihilation, which occurs when an electron and positron collide and the energy is converted to gamma rays. The BGT is used for a variety of research applications, particularly those that benefit from specially tailored positron gases, plasmas and/or pulsed beams. Examples include use of the BGT to create antihydrogen and the positronium molecule.

The rotating wall technique is a method used to compress a single-component plasma confined in an electromagnetic trap. It is one of many scientific and technological applications that rely on storing charged particles in vacuum. This technique has found extensive use in improving the quality of these traps and in tailoring of both positron and antiproton plasmas for a variety of end uses.

<span class="mw-page-title-main">John H. Malmberg</span> American physicist

John Holmes Malmberg was an American plasma physicist and a professor at the University of California, San Diego. He was known for making the first experimental measurements of Landau damping of plasma waves in 1964, as well as for his research on non-neutral plasmas and the development of the Penning–Malmberg trap.

<span class="mw-page-title-main">Penning–Malmberg trap</span> Electromagnetic device used to confine particles of a single sign of charge

The Penning–Malmberg trap, named after Frans Penning and John Malmberg, is an electromagnetic device used to confine large numbers of charged particles of a single sign of charge. Much interest in Penning–Malmberg (PM) traps arises from the fact that if the density of particles is large and the temperature is low, the gas will become a single-component plasma. While confinement of electrically neutral plasmas is generally difficult, single-species plasmas can be confined for long times in PM traps. They are the method of choice to study a variety of plasma phenomena. They are also widely used to confine antiparticles such as positrons and antiprotons for use in studies of the properties of antimatter and interactions of antiparticles with matter.

References

  1. "Thousands of cold anti-atoms produced at CERN" (Press release). CERN. 18 September 2002.
  2. Amoretti, M.; et al. (ATHENA Collaboration) (2002). "Production and detection of cold antihydrogen atoms". Nature . 419 (6906): 456–459. Bibcode:2002Natur.419..456A. doi: 10.1038/nature01096 . PMID   12368849. S2CID   4315273.
  3. Amsler, C.; Bonomi, G.; Fontana, A.; Kellerbauer, A.; Lagomarsino, V.; Rizzini, E. Lodi; Rotondi, A.; Testera, G.; Venturelli, L.; Zurlo, N. (2014-08-10). "The ATHENA experiment for the study of antihydrogen". International Journal of Modern Physics A. 29 (20): 1430035. Bibcode:2014IJMPA..2930035A. doi:10.1142/S0217751X1430035X. ISSN   0217-751X.
  4. "Ask The Experts". Scientific American. 293 (3): 124. September 2005. Bibcode:2005SciAm.293c.124.. doi:10.1038/scientificamerican0905-124. ISSN   0036-8733.
  5. Fujiwara, M. C.; Amoretti, M.; Amsler, C.; Bonomi, G.; Bouchta, A.; Bowe, P. D.; Canali, C.; Carraro, C.; Cesar, C. L.; Charlton, M.; Doser, M. (2008-07-30). "Temporally Controlled Modulation of Antihydrogen Production and the Temperature Scaling of Antiproton-Positron Recombination". Physical Review Letters. 101 (5): 053401. Bibcode:2008PhRvL.101e3401F. doi:10.1103/PhysRevLett.101.053401. ISSN   0031-9007. PMID   18764390.
  6. Berg, M.; Haack, M.; Körs, B. (2004-06-01). "Brane/flux interactions in orientifolds". Fortschritte der Physik. 52 (67): 583–589. arXiv: hep-th/0312172 . Bibcode:2004ForPh..52..583B. doi:10.1002/prop.200310148. ISSN   0015-8208. S2CID   15924007.
  7. Cesar, C. L. (2005). "Cold Antihydrogen at ATHENA: Experimental Observation and Beyond". AIP Conference Proceedings. Rio de Janeiro (Brazil): AIP. 770: 33–40. Bibcode:2005AIPC..770...33C. doi:10.1063/1.1928839.
  8. Funakoshi, R.; Amoretti, M.; Bonomi, G.; Bowe, P. D.; Canali, C.; Carraro, C.; Cesar, C. L.; Charlton, M.; Doser, M.; Fontana, A.; Fujiwara, M. C. (2007-07-19). "Positron plasma control techniques for the production of cold antihydrogen". Physical Review A. 76 (1): 012713. Bibcode:2007PhRvA..76a2713F. doi:10.1103/PhysRevA.76.012713. ISSN   1050-2947.
  9. Amoretti, M.; Amsler, C.; Bonomi, G.; Bouchta, A.; Bowe, P.D.; Carraro, C.; Cesar, C.L.; Charlton, M.; Doser, M.; Filippini, V.; Fontana, A. (February 2004). "Production and detection of cold antihydrogen atoms". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 518 (1–2): 244–248. Bibcode:2004NIMPA.518..244A. doi:10.1016/j.nima.2003.10.072.
  10. Amoretti, M.; et al. (ATHENA Collaboration) (February 2004). "The ATHENA antihydrogen apparatus". Nuclear Instruments and Methods in Physics Research Section A . 518 (3): 679–711. Bibcode:2004NIMPA.518..679A. CiteSeerX   10.1.1.467.7912 . doi:10.1016/j.nima.2003.09.052.
  11. "The ATHENA Collaboration". CERN. Archived from the original on 1 March 2012. Retrieved 1 February 2010.