Abrasion resistant steel

Last updated

Abrasion resistant steel is a high-carbon alloy steel that is produced to resist wear and stress. There are several grades of abrasion resistant steel, including AR200, AR235, AR400, AR450, AR500 and AR600. [1]

Contents

Quenching & Tempering

Abrasion resistant steel undergoes a two-step heat treatment process called quenching and tempering, which alters the steel's grain structure to increase hardness and toughness. [2]

During the quenching phase, the steel is heated to an above-critical temperature and is then rapidly cooled with water. The steel is then re-heated to a below-critical temperature and air cooled, which is the tempering phase. [2]

Brinell Hardness

The hardness of abrasion resistant steel is determined by a Brinell hardness test. This test uses a small steel ball to inflict force on a material. The indentation created by the steel ball is then measured and used to calculate Brinell hardness number (BHN). [3]

Average Brinell Hardness Numbers (BHNs) for Abrasion Resistant Steel Grades [4]
GradeBHN
AR200 & AR235180-260
AR400360-440
AR450430-480
AR500460-544
AR600570-625

Standards for Brinell hardness testing are regulated by ASTM International under E10 specifications. [5]

Applications

Abrasion resistant steel is typically used in applications requiring high wear resistance, including backhoe buckets and teeth, bulldozer blades, dump truck beds, ore and coal chutes, augers and aggregate conveyors. [6] Additional uses include shooting targets and armor, AR500 steel is commonly used for these applications as higher BHN steels are more brittle. [7]

Related Research Articles

<span class="mw-page-title-main">Stainless steel</span> Steel alloy resistant to corrosion

Stainless steel, also known as inox, corrosion-resistant steel (CRES), or Rustless steel, is an alloy of iron that is resistant to rusting and corrosion. It contains at least 10.5% chromium and usually nickel, and may also contain other elements, such as carbon, to obtain the desired properties. Stainless steel's resistance to corrosion results from the chromium, which forms a passive film that can protect the material and self-heal in the presence of oxygen.

<span class="mw-page-title-main">Differential heat treatment</span> Technique used in heat treating

Differential heat treatment is a technique used during heat treating of steel to harden or soften certain areas of an object, creating a difference in hardness between these areas. There are many techniques for creating a difference in properties, but most can be defined as either differential hardening or differential tempering. These were common heat treatment techniques used historically in Europe and Asia, with possibly the most widely known example being from Japanese swordsmithing. Some modern varieties were developed in the twentieth century as metallurgical knowledge and technology rapidly increased.

<span class="mw-page-title-main">Heat treating</span> Process of heating something to alter it

Heat treating is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are also used in the manufacture of many other materials, such as glass. Heat treatment involves the use of heating or chilling, normally to extreme temperatures, to achieve the desired result such as hardening or softening of a material. Heat treatment techniques include annealing, case hardening, precipitation strengthening, tempering, carburizing, normalizing and quenching. Although the term heat treatment applies only to processes where the heating and cooling are done for the specific purpose of altering properties intentionally, heating and cooling often occur incidentally during other manufacturing processes such as hot forming or welding.

<span class="mw-page-title-main">Rockwell scale</span> Hardness scale

The Rockwell scale is a hardness scale based on indentation hardness of a material. The Rockwell test measures the depth of penetration of an indenter under a large load compared to the penetration made by a preload. There are different scales, denoted by a single letter, that use different loads or indenters. The result is a dimensionless number noted as HRA, HRB, HRC, etc., where the last letter is the respective Rockwell scale. Higher numbers correspond to harder materials.

<span class="mw-page-title-main">Brinell scale</span> Brinell scale of hardness

The Brinell scale characterizes the indentation hardness of materials through the scale of penetration of an indenter, loaded on a material test-piece. It is one of several definitions of hardness in materials science.

<span class="mw-page-title-main">Martensitic stainless steel</span> One of the 5 crystalline structures of stainless steel

Martensitic stainless steel is a type of stainless steel alloy that has a martensite crystal structure. It can be hardened and tempered through aging and heat treatment. The other main types of stainless steel are austenitic, ferritic, duplex, and precipitation hardened.

<span class="mw-page-title-main">Carbon steel</span> Steel in which the main interstitial alloying constituent is carbon

Carbon steel is a steel with carbon content from about 0.05 up to 2.1 percent by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states:

<span class="mw-page-title-main">Tool steel</span> Any of various steels that are particularly well-suited to be made into tools and tooling

Tool steel is any of various carbon steels and alloy steels that are particularly well-suited to be made into tools and tooling, including cutting tools, dies, hand tools, knives, and others. Their suitability comes from their distinctive hardness, resistance to abrasion and deformation, and their ability to hold a cutting edge at elevated temperatures. As a result, tool steels are suited for use in the shaping of other materials, as for example in cutting, machining, stamping, or forging.

<span class="mw-page-title-main">High-speed steel</span> Subset of tool steels

High-speed steel is a subset of tool steels, commonly used as cutting tool material.

<span class="mw-page-title-main">Quenching</span> Rapid cooling of a workpiece to obtain certain material properties

In materials science, quenching is the rapid cooling of a workpiece in water, oil, polymer, air, or other fluids to obtain certain material properties. A type of heat treating, quenching prevents undesired low-temperature processes, such as phase transformations, from occurring. It does this by reducing the window of time during which these undesired reactions are both thermodynamically favorable, and kinetically accessible; for instance, quenching can reduce the crystal grain size of both metallic and plastic materials, increasing their hardness.

<span class="mw-page-title-main">Tempering (metallurgy)</span> Process of heat treating used to increase the toughness of iron-based alloys

Tempering is a process of heat treating, which is used to increase the toughness of iron-based alloys. Tempering is usually performed after hardening, to reduce some of the excess hardness, and is done by heating the metal to some temperature below the critical point for a certain period of time, then allowing it to cool in still air. The exact temperature determines the amount of hardness removed, and depends on both the specific composition of the alloy and on the desired properties in the finished product. For instance, very hard tools are often tempered at low temperatures, while springs are tempered at much higher temperatures.

<span class="mw-page-title-main">Hardenability</span> Depth to which a metal is hardened after being submitted to a thermal treatment

Hardenability is the depth to which a steel is hardened after putting it through a heat treatment process. It should not be confused with hardness, which is a measure of a sample's resistance to indentation or scratching. It is an important property for welding, since it is inversely proportional to weldability, that is, the ease of welding a material.

<span class="mw-page-title-main">Ballistic plate</span> Protective armoured plate

A ballistic plate, also known as an armour plate, is a protective armoured plate inserted into a carrier or bulletproof vest, that can be used stand-alone, or in conjunction with other armour. "Hard armour" usually denotes armour that uses ballistic plates.

6061 aluminium alloy is a precipitation-hardened aluminium alloy, containing magnesium and silicon as its major alloying elements. Originally called "Alloy 61S", it was developed in 1935. It has good mechanical properties, exhibits good weldability, and is very commonly extruded. It is one of the most common alloys of aluminium for general-purpose use.

7075 aluminium alloy (AA7075) is an aluminium alloy with zinc as the primary alloying element. It has excellent mechanical properties and exhibits good ductility, high strength, toughness, and good resistance to fatigue. It is more susceptible to embrittlement than many other aluminium alloys because of microsegregation, but has significantly better corrosion resistance than the alloys from the 2000 series. It is one of the most commonly used aluminium alloys for highly stressed structural applications and has been extensively used in aircraft structural parts.

<span class="mw-page-title-main">Ceramography</span> Preparation and study of ceramics with optical instruments

Ceramography is the art and science of preparation, examination and evaluation of ceramic microstructures. Ceramography can be thought of as the metallography of ceramics. The microstructure is the structure level of approximately 0.1 to 100 µm, between the minimum wavelength of visible light and the resolution limit of the naked eye. The microstructure includes most grains, secondary phases, grain boundaries, pores, micro-cracks and hardness microindentations. Most bulk mechanical, optical, thermal, electrical and magnetic properties are significantly affected by the microstructure. The fabrication method and process conditions are generally indicated by the microstructure. The root cause of many ceramic failures is evident in the microstructure. Ceramography is part of the broader field of materialography, which includes all the microscopic techniques of material analysis, such as metallography, petrography and plastography. Ceramography is usually reserved for high-performance ceramics for industrial applications, such as 85–99.9% alumina (Al2O3) in Fig. 1, zirconia (ZrO2), silicon carbide (SiC), silicon nitride (Si3N4), and ceramic-matrix composites. It is seldom used on whiteware ceramics such as sanitaryware, wall tiles and dishware.

<span class="mw-page-title-main">Austempering</span>

Austempering is heat treatment that is applied to ferrous metals, most notably steel and ductile iron. In steel it produces a bainite microstructure whereas in cast irons it produces a structure of acicular ferrite and high carbon, stabilized austenite known as ausferrite. It is primarily used to improve mechanical properties or reduce / eliminate distortion. Austempering is defined by both the process and the resultant microstructure. Typical austempering process parameters applied to an unsuitable material will not result in the formation of bainite or ausferrite and thus the final product will not be called austempered. Both microstructures may also be produced via other methods. For example, they may be produced as-cast or air cooled with the proper alloy content. These materials are also not referred to as austempered.

Microalloyed steel is a type of alloy steel that contains small amounts of alloying elements, including niobium, vanadium, titanium, molybdenum, zirconium, boron, and rare-earth metals. They are used to refine the grain microstructure or facilitate precipitation hardening.

<span class="mw-page-title-main">Mangalloy</span> Alloy steel containing around 13% manganese

Mangalloy, also called manganese steel or Hadfield steel, is an alloy steel containing an average of around 13% manganese. Mangalloy is known for its high impact strength and resistance to abrasion once in its work-hardened state.

USAF-96 is a high-strength, high-performance, low-alloy, low-cost steel, developed for new generation of bunker buster type bombs, e.g. the Massive Ordnance Penetrator and the improved version of the GBU-28 bomb known as EGBU-28. It was developed by the US Air Force at the Eglin Air Force Munitions Directorate. It uses only materials domestic to the USA. In particular it requires no tungsten.

References

  1. Leeco Steel. (2021, September 7). What is Abrasion Resistant Steel Plate? Leeco Steel, LLC. Retrieved April 14, 2022, from https://www.leecosteel.com/news/post/understanding-abrasion-resistant-steel-plate/
  2. 1 2 T. (2021, February 28). Quenching and tempering of steel. Tec-Science. Retrieved April 14, 2022, from https://www.tec-science.com/material-science/heat-treatment-steel/quenching-and-tempering/
  3. E. (2020, April 7). Brinell Hardness Test - Methods, advantages, disadvantages, applications. EnggStudy. Retrieved April 14, 2022, from https://www.enggstudy.com/brinell-hardness-test/
  4. ASM International. (2008). Failure Analysis of Heat Treated Steel Components (L. C. F. Canale, R.A.M., & G. E. Totten, Eds.). ASM International.
  5. ASTM International. (2018). Standard Test Method for Brinell Hardness of Metallic Materials. (Designation: E10-18).
  6. Packard, K. (2006, July 11). Cracking the case. The Fabricator. Retrieved April 14, 2022, from https://www.thefabricator.com/thewelder/article/consumables/cracking-the-case
  7. Metals, Alliant (2017-05-24). "What is AR500 Steel?". Alliant Metals Inc. Retrieved 2023-09-26.