Absorption heat transformer

Last updated
the driving heat flow
Q
.
1
{\displaystyle {\dot {Q}}_{1}}
at intermediate temperature level
T
1
{\displaystyle T_{1}}
will be split in the revalued heat flow
Q
.
2
{\displaystyle {\dot {Q}}_{2}}
at high temperature level
T
2
{\displaystyle T_{2}}
and in rejected heat flow
Q
.
0
{\displaystyle {\dot {Q}}_{0}}
at low temperature level
T
0
{\displaystyle T_{0}} Blackbox AHT.png
the driving heat flow at intermediate temperature level will be split in the revalued heat flow at high temperature level and in rejected heat flow at low temperature level
scheme of the absorption heat transformer process Absorption heat transformer process scheme.png
scheme of the absorption heat transformer process


An absorption heat transformer (AHT) is a device which transfers heat from an intermediate temperature level to a high temperature level by means of an absorption process. It is driven by the temperature difference between the intermediate temperature and a low temperature level. The absorption heat transformer splits a heat flow at an intermediate temperature level in two heat flows, at a higher (revaluated) temperature level and at a lower temperature level (rejection heat). Such a device is also denominated type II absorption heat pump or booster heat pump. Absorption heat transformers are especially suitable for heat recovery from industrial processes, its main advantage being the capacity to upgrade to a usable level the temperature of waste heat streams using only negligible quantities of electrical energy and no additional primary energy. [1]

Contents

Definition of the thermal coefficient of performance

It revaluates approximately 50% of the driving heat flow. The temperature lift from the intermediate to the high temperature level is up to 50K. The simplest construction, a single effect absorption heat transformer, consists of one condenser, one evaporator, one absorber and one generator. In contrast to a type I absorption heat pump an absorption heat transformer operates in reverse. The difference with absorption heat pump is that the absorber and evaporator now operate at high pressure and the condenser and generator at low pressure. The most common working pairs are water/lithium bromide (refrigerant = water, absorbent = LiBr) and ammonia/water (refrigerant = ammonia, absorbent = water).

Absorption heat pump

An absorption heat pump is an air-source heat pump driven not by electricity, but by a heat source such as solar-heated water, or geothermal-heated water. Absorption refrigerators also work on the same principle, but are not reversible and cannot serve as a heat source.

Water chemical compound

Water is a transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's streams, lakes, and oceans, and the fluids of most living organisms. It is vital for all known forms of life, even though it provides no calories or organic nutrients. Its chemical formula is H2O, meaning that each of its molecules contains one oxygen and two hydrogen atoms, connected by covalent bonds. Water is the name of the liquid state of H2O at standard ambient temperature and pressure. It forms precipitation in the form of rain and aerosols in the form of fog. Clouds are formed from suspended droplets of water and ice, its solid state. When finely divided, crystalline ice may precipitate in the form of snow. The gaseous state of water is steam or water vapor. Water moves continually through the water cycle of evaporation, transpiration (evapotranspiration), condensation, precipitation, and runoff, usually reaching the sea.

Lithium bromide chemical compound

Lithium bromide (LiBr) is a chemical compound of lithium and bromine. Its extreme hygroscopic character makes LiBr useful as a desiccant in certain air conditioning systems.

Process

A single absorption heat transformer consists of an absorber, generator, evaporator and condenser. In addition, there are a refrigerant pump, solution pump, solution throttle and solution heat exchanger for internal heat recovery. At the evaporator the refrigerant evaporates by the heat input at intermediate temperature level. The refrigerant vapour is absorbed in the absorber. Due to the released heat of absorption the process delivers heat at the high temperature level. This heat is the revalued heat. Consequently, the absorbent is diluted while absorbing the refrigerant vapour. That diluted absorbent streams through the throttle to the generator. In the generator the refrigerant desorbs from the diluted solution. This process is driven by the heat input at the intermediate temperature level. The refrigerant vapour is condensed in the condenser and it is pumped by the refrigerant pump into the evaporator. The heat at the condenser occurs at low temperature level. The concentrated absorbent is pumped into the absorber by the solution pump.

Related Research Articles

Refrigeration Process of moving heat from one location to another in controlled conditions

Refrigeration is a process of removing heat from a low-temperature reservoir and transferring it to a high-temperature reservoir. The work of heat transfer is traditionally driven by mechanical means, but can also be driven by heat, magnetism, electricity, laser, or other means. Refrigeration has many applications, including, but not limited to: household refrigerators, industrial freezers, cryogenics, and air conditioning. Heat pumps may use the heat output of the refrigeration process, and also may be designed to be reversible, but are otherwise similar to air conditioning units.

Heat pump a device that transfers thermal energy in the opposite direction of spontaneous heat transfer

A heat pump is a device that transfers heat energy from a source of heat to what is called a heat sink. Heat pumps move thermal energy in the opposite direction of spontaneous heat transfer, by absorbing heat from a cold space and releasing it to a warmer one. A heat pump uses external power to accomplish the work of transferring energy from the heat source to the heat sink. The most common design of a heat pump involves four main components – a condenser, an expansion valve, an evaporator and a compressor. The heat transfer medium circulated through these components is called refrigerant.

Heat exchanger piece of equipment built for efficient heat transfer from one medium to another

A heat exchanger is a device used to transfer heat between two or more fluids. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact. They are widely used in space heating, refrigeration, air conditioning, power stations, chemical plants, petrochemical plants, petroleum refineries, natural-gas processing, and sewage treatment. The classic example of a heat exchanger is found in an internal combustion engine in which a circulating fluid known as engine coolant flows through radiator coils and air flows past the coils, which cools the coolant and heats the incoming air. Another example is the heat sink, which is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant.

Heat pipe

A heat pipe is a heat-transfer device that combines the principles of both thermal conductivity and phase transition to effectively transfer heat between two solid interfaces.

Rankine cycle Model that is used to predict the performance of steam turbine systems

The Rankine cycle is a model used to predict the performance of steam turbine systems. It was also used to study the performance of reciprocating steam engines. The Rankine cycle is an idealized thermodynamic cycle of a heat engine that converts heat into mechanical work while undergoing phase change. It is an idealized cycle in which friction losses in each of the four components are neglected. The heat is supplied externally to a closed loop, which usually uses water as the working fluid. It is named after William John Macquorn Rankine, a Scottish polymath and Glasgow University professor.

Chiller machine that removes heat from a liquid via a vapor-compression or absorption refrigeration cycle

A chiller is a machine that removes heat from a liquid via a vapor-compression or absorption refrigeration cycle. This liquid can then be circulated through a heat exchanger to cool equipment, or another process stream. As a necessary by-product, refrigeration creates waste heat that must be exhausted to ambience, or for greater efficiency, recovered for heating purposes.

Icemaker

An icemaker, ice generator, or ice machine may refer to either a consumer device for making ice, found inside a home freezer; a stand-alone appliance for making ice, or an industrial machine for making ice on a large scale. The term "ice machine" usually refers to the stand-alone appliance.

Icyball

Icyball was a name given to two early refrigerators, one made by Australian Sir Edward Hallstrom in 1923, and the other design patented by David Forbes Keith of Toronto, Ontario, Canada, and manufactured by American Powel Crosley Jr., who bought the rights to the device. Both devices were unusual in design in that they did not require the use of electricity for cooling. They ran for a day on a cup of kerosene, allowing rural users lacking electricity the benefits of refrigeration.

Absorption refrigerator Single pressure absorption refrigeration

An absorption refrigerator is a refrigerator that uses a heat source to provide the energy needed to drive the cooling process.

Vapor-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air-conditioning of buildings and automobiles. It is also used in domestic and commercial refrigerators, large-scale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services. Oil refineries, petrochemical and chemical processing plants, and natural gas processing plants are among the many types of industrial plants that often utilize large vapor-compression refrigeration systems.

Turboexpander

A turboexpander, also referred to as a turbo-expander or an expansion turbine, is a centrifugal or axial-flow turbine, through which a high-pressure gas is expanded to produce work that is often used to drive a compressor or generator.

An evaporator is a device in a process used to turn the liquid form of a chemical substance such as water into its gaseous-form/vapor. The liquid is evaporated, or vaporized, into a gas form of the targeted substance in that process.

Heat pump and refrigeration cycle Mathematical models of heat pumps and refrigeration

Thermodynamic heat pump cycles or refrigeration cycles are the conceptual and mathematical models for heat pumps and refrigerators. A heat pump is a machine or device that moves heat from one location at a lower temperature to another location at a higher temperature using mechanical work or a high-temperature heat source. Thus a heat pump may be thought of as a "heater" if the objective is to warm the heat sink, or a "refrigerator" if the objective is to cool the heat source. In either case, the operating principles are identical. Heat is moved from a cold place to a warm place.

Condenser (heat transfer) device used to condense a substance from its gaseous to its liquid state

In systems involving heat transfer, a condenser is a device or unit used to condense a substance from its gaseous to its liquid state, by cooling it. In so doing, the latent heat is given up by the substance and transferred to the surrounding environment. Condensers can be made according to numerous designs, and come in many sizes ranging from rather small (hand-held) to very large. For example, a refrigerator uses a condenser to get rid of heat extracted from the interior of the unit to the outside air. Condensers are used in air conditioning, industrial chemical processes such as distillation, steam power plants and other heat-exchange systems. Use of cooling water or surrounding air as the coolant is common in many condensers.

A direct exchange (DX) geothermal heat pump is a type of geothermal heat pump in which refrigerant circulates through copper tubing placed in the ground. It is a closed-loop, refrigerant-based geothermal system.

Pumpable ice technology

Pumpable ice (PI) technology is a technology to produce and use fluids or secondary refrigerants, also called coolants, with the viscosity of water or jelly and the cooling capacity of ice. Pumpable ice is typically a slurry of ice crystals or particles ranging from 5 to 10,000 micrometers (1 cm) in diameter and transported in brine, seawater, food liquid, or gas bubbles of air, ozone, or carbon dioxide.

The term subcooling also called undercooling refers to a liquid existing at a temperature below its normal boiling point. For example, water boils at 373 K; at room temperature (300 K) the water is termed "subcooled". A subcooled liquid is the convenient state in which, say, refrigerants may undergo the remaining stages of a refrigeration cycle. Normally, a refrigeration system has a subcooling stage, allowing technicians to be certain that the quality, in which the refrigerant reaches the next step on the cycle, is the desired one. Subcooling may take place in heat exchangers and outside them. Being both similar and inverse processes, subcooling and superheating are important to determine stability and well-functioning of a refrigeration system.

In refrigeration, flash-gas is refrigerant in gas form produced spontaneously when the condensed liquid is subjected to boiling. The presence of flash-gas in the liquid lines reduces the efficiency of the refrigeration cycle. It can also lead several expansion systems to work improperly, and increase superheating at the evaporator. This is normally perceived as an unwanted condition caused by dissociation between the volume of the system, and the pressures and temperatures that allow the refrigerant to be liquid. Flash-gas must not be confused with lack of condensation, but special gear such as receivers, internal heat exchangers, insulation, and refrigeration cycle optimizers may improve condensation and avoid gas in the liquid lines.

Hygroscopic cycle

The Hygroscopic Cycle is a thermodynamic cycle converting thermal energy into mechanical power by the means of a steam turbine. It is similar to the Rankine cycle using water as the motive fluid but with the novelty of introducing salts and their hygroscopic properties for the condensation. The salts are desorbed in the boiler or steam generator, where clean steam is released and superheated in order to be expanded and generate power through the steam turbine. Boiler blowdown with the concentrated hygroscopic compounds is used thermally to pre-heat the steam turbine condensate, and as reflux in the steam-absorber.

Heat engines, refrigeration cycles and heat pumps usually involve a fluid to and from which heat is transferred while undergoing a thermodynamic cycle. This fluid is called the working fluid. Refrigeration and heat pump technologies often refer to working fluids as refrigerants. Most thermodynamic cycles make use of the latent heat of the working fluid. In case of other cycles the working fluid remains in gaseous phase while undergoing all the processes of the cycle. When it comes to heat engines, working fluid generally undergoes a combustion process as well, for example in internal combustion engines or gas turbines. There are also technologies in heat pump and refrigeration, where working fluid does not change phase, such as reverse Brayton or Stirling cycle.

References

  1. Cudok, F.; Corrales Ciganda, J. L; Kononenko, N.; Drescher, E. (2017). "Experimental results of an absorption heat transformer". Proceedings of 12th IEA Heat Pump Conference.