Absorption heat pump

Last updated
14,000 kW absorption heat pump Absorption heat pump.jpg
14,000 kW absorption heat pump

An absorption heat pump (AHP) is a heat pump driven by thermal energy such as combustion of natural gas, steam solar-heated water, air or geothermal-heated water [1] [2] differently from compression heat pumps that are driven by mechanical energy.[ citation needed ] AHPs are more complex and require larger units compared to compression heat pumps. [3] In particular, the lower electricity demand of such heat pumps is related to the liquid pumping only. [3] Their applications are restricted to those cases when electricity is extremely expensive or a large amount of unutilized heat at suitable temperatures is available and when the cooling or heating output has a greater value than heat input consumed. [3] Absorption refrigerators also work on the same principle, but are not reversible and cannot serve as a heat source.[ citation needed ]

Contents

Operating principles

The heat pump system is made up of some main units such as the generator, condenser, evaporator, absorber and heat exchanger, as well as the suction device, shielding pump (solution pump and refrigerant pump). [4] In the simplest case, five heat exchangers are also required (at each component and an internal heat exchanger). [3] [4] Other components include solution heat exchangers, valves, as well as the suction device, shielding pump (solution pump and refrigerant pump) and other auxiliary parts. [4]

For the absorption heat pump circulation, the absorber, generator and pump can be regarded as a "thermal compressor". The absorber is equivalent to the inlet side of the compressor, and the generator is equivalent to the outlet side of the compressor. The absorbent can be regarded as a carrier liquid that transports the generated refrigerant gas from the low-pressure side of the cycle to the high-pressure side. [5]

Since the main components of devices that achieve three purposes are the same, there is a heat pump that enables it to realize all working modes: heat pump mode, cooler mode and heat transformer mode. [6] The absorption heat pump can be used as a cooler during summer while, during winter, it can be used on heat pump or heat transformer mode according to the available heat source. [6]

The performance of the absorption heat pump is indicated by the coefficient of performance (COP). The COP is the ratio of the removed (for refrigeration) or provided (for heating) heat to the energy input. At present, the maximum temperature of its output does not exceed 150 °C. The temperature rise ΔT is generally 30–50 °C. The cooling performance coefficient is 0.8 to 1.6, the heating performance coefficient is 1.2 to 2.5, and the heat transfer performance coefficient is 0.4 to 0.5. [4]

When they are applied in industry, the absorption heat pumps should be properly placed in terms of energy and they must satisfy the limitations of special features of the surroundings. [3]

AHP types

Type 1: conventional heat pumps

Absorption heat pump configuration (type 1 refrigeration) Absorption heat pump configuration (refrigeration).jpg
Absorption heat pump configuration (type 1 refrigeration)
Absorption heat pump temperature (type 1); Q2-driving high temperature flow (desorber); Q0-low temperature flow (evaporator); Q1-intermediate heat flow (condenser). Absorption heat pumps type 1.jpg
Absorption heat pump temperature (type 1); Q2-driving high temperature flow (desorber); Q0-low temperature flow (evaporator); Q1-intermediate heat flow (condenser).

Classified by temperature, AHPs can be divided into two categories. In type 1 AHP, the condenser temperature is higher than evaporator temperature [7] (also referred to as heat amplifier [8] and refrigeration [3] ). Driven by a high-temperature heat source, the first type absorption heat pump extracts the heat of waste heat (waste heat) and outputs a medium-temperature heat medium that is 30–60 degrees Celsius higher than the waste heat. [9] This type is more common and could be an alternative to traditional compression machines. The coefficient of performance of the first type absorption heat pump is greater than 1, generally 1.5 to 2.5. [4]

The heat pump is composed of the main components such as generators, condenser, evaporator, absorber and heat exchanger, as well as the suction device, shielding pump (solution pump and refrigerant pump), and other auxiliary parts. The air extraction device removes the non-condensable gas in the heat pump and keeps the heat pump always in a high vacuum state. [4]

Absorption heat pump process scheme (type 2) Absorption heat transformer process scheme.png
Absorption heat pump process scheme (type 2)

Type 2: heat transformer heat pumps

In type 2 AHP, condenser temperature is lower than evaporator temperature [7] (also referred to as heat transformer [10] ). The type 2 absorption heat pump uses the heat of the medium-temperature waste heat intelligently, output high-temperature heat medium (hot water steam) 25–50 degrees Celsius higher than medium temperature waste heat. [9] The type 2 absorption heat pump could be driven by low-grade waste heat in the production process or in nature, which can achieve energy saving and emission reduction and reduce production costs, and it has practical application in petrochemical and coal chemical industries. [9] The coefficient of performance of the second type absorption heat pump is always less than 1, generally 0.4 to 0.5. [4]

Absorption heat pump temperature (type 2); Q1-intermediate driven heat flow (evaporator); Q2-high temperature revalued flow (absorber); Q0-low temperature rejected flow (condenser). Blackbox AHT.png
Absorption heat pump temperature (type 2); Q1-intermediate driven heat flow (evaporator); Q2-high temperature revalued flow (absorber); Q0-low temperature rejected flow (condenser).

Typical working fluids

A mixture of fluid is used as the working fluid, different concentrations of the working fluid correspond to different temperatures, the temperature and concentration of working fluid undergo a cyclic change. When the generator is supplied with heat, the temperature of the mixture rises, thereby increase the concentration of high-boiling components (absorbent) and release the refrigerant. [3] When refrigerant is mixed with refrigerant are in the absorber, heat is released. [5] Several types of the mixture could be used in the absorption unit but water/lithium bromide and ammonia/water are the common choices. [3]

Water and Lithium bromide (LiBr)

Ammonia and water absorption heat pump Absorption refrigerator working.svg
Ammonia and water absorption heat pump

Water is the refrigerant and LiBr the absorption medium. [1] Water and LiBr systems have bigger capacities and are applied in a broad range in the industry, the sizes vary from tens of kW to several MW. [3] The first type of lithium bromide absorption heat pump unit is a high-temperature heat source (steam, high-temperature hot water, fuel oil, gas) as the driving heat source, lithium bromide solution as the absorbent, and water as the refrigerant, and the low-temperature heat source (such as waste hot water) is recycled and used.[ citation needed ]

Ammonia and water

Ammonia is the refrigerant and water the absorption medium. [1] In the absorber and generator, the absorption or effect of the ammonia aqueous solution is used to radiate heat or absorb heat. In the evaporator and condenser, the phase change of pure ammonia is used to complete the external absorption or heat release. [4] Like a traditional heat pump, the refrigerant (ammonia) is condensed in the condenser, and heat is then released; the pressure is dropped after the expansion unit and the refrigerant is evaporated to absorb heat.[ citation needed ]

The ammonia/water heat pumps are essentially limited to residential applications because they are only commercially limited to small sizes (a few KW). [3] [11] If the system absorbs heat from the residential building, it works as a refrigeration machine; if it releases heat to the interior of a residential building, it heats the house. [12]

The key component of heat pumps using ammonia and water on the market today is the generator absorber heat exchanger (GAX), which improves the thermal efficiency of the equipment by recovering the heat released when ammonia is absorbed into the water. [11] Other innovations applied to this type of heat pump include efficient steam separation, variable ammonia flow, and variable capacity, and low-emission capacity-variable gas combustion. [11]

Thermal energy sources

Solar thermal

Single, double, or triple iterative absorption cooling cycles are used in different solar-thermal-cooling system designs. The more cycles, the more efficient they are.[ citation needed ]

In the late 19th century, the most common phase change refrigerant material for absorption cooling was a solution of ammonia and water. Today, the combination of lithium bromide and water is also in common use. One end of the system of expansion/condensation pipes is heated, and the other end gets cold enough to make ice. Originally, natural gas was used as a heat source in the late 19th century. Today, propane is used in recreational vehicle absorption refrigerators. Innovative hot water solar thermal energy collectors can also be used as the modern "free energy" heat source.

Efficient absorption refrigerators require water of at least 88 °C (190 °F). Common, inexpensive flat-plate solar thermal collectors only produce about 70 °C (160 °F) water, but several successful commercial projects in the US, Asia and Europe have shown that flat plate solar collectors specially developed for temperatures over 93 °C (200 °F) (featuring double glazing, increased backside insulation, etc.) can be effective and cost-efficient. [13] Evacuated-tube solar panels can be used as well. Concentrating solar collectors required for absorption refrigerators are less effective in hot humid, cloudy environments, especially where the overnight low temperature and relative humidity are uncomfortably high. Where water can be heated well above 88+ °C (190 °F), it can be stored and used when the sun is not shining.[ citation needed ]

For more than 150 years, absorption refrigerators have been used to make ice. [14] This ice can be stored and used as an "ice battery" for cooling when the sun is not shining, as it was in the 1995 Hotel New Otani Tokyo in Japan. [15] Mathematical models are available in the public domain for ice-based thermal energy storage performance calculations. [12]

Geothermal

The earth as a huge and stable thermal storage resource, its shallow ground temperature and groundwater also have wide application prospects in energy use, especially for building energy saving is of great significance. Using absorption heat pump (refrigeration) technology, 65–90°C geothermal water can be used to produce 7–9°C refrigerant water for summer air conditioning. Reasonable use of corresponding heat pump technology can achieve the efficient and comprehensive utilization of geothermal resources at different temperature levels, greatly reducing energy consumption for heating and cooling of residential and commercial buildings. [4] The use of 65°C and above geothermal water (or waste/waste heat) to drive the absorption heat pump for cooling, and the corresponding heat pump type (heating/heating) for heating, can achieve good energy-saving and economic benefits. [4] For low-temperature heat sources of 15–25 °C, driven by a small amount of high-temperature heat sources (such as high-temperature steam or direct combustion), cold water at a temperature of 7–15 °C and hot water at a temperature above 47 °C can be prepared. 1.2, >1.5 when heating. [4]

Natural gas

Natural gas is a common-used heat source, therefore, absorption heat pumps are sometimes called gas-fired heat pumps. [11] Also, when other heat sources heat pumps (waste heat for example) are running at the heating mode, they can meet the overload heating requirements of very cold periods in an efficient manner through additional gas boilers. [6]

Waste heat

Illustratively, the waste heat drive system may cover cooling and heating loads by operating in a cooler and heat converter mode. It is possible that only one device can provide resources to the urban area in a resource-efficient manner throughout most of the year driven by waste heat. [6]

See also

Related Research Articles

An autonomous building is a building designed to be operated independently from infrastructural support services such as the electric power grid, gas grid, municipal water systems, sewage treatment systems, storm drains, communication services, and in some cases, public roads.

<span class="mw-page-title-main">Refrigeration</span> Process of moving heat from one location to another in controlled conditions

Refrigeration is any of various types of cooling of a space, substance, or system to lower and/or maintain its temperature below the ambient one. Refrigeration is an artificial, or human-made, cooling method.

<span class="mw-page-title-main">Heating, ventilation, and air conditioning</span> Technology of indoor and vehicular environmental comfort

Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. "Refrigeration" is sometimes added to the field's abbreviation as HVAC&R or HVACR, or "ventilation" is dropped, as in HACR.

<span class="mw-page-title-main">Heat pump</span> System that transfers heat from one space to another

A heat pump is a device that uses work to transfer heat from a cool space to a warm space by transferring thermal energy using a refrigeration cycle, cooling the cool space and warming the warm space. In cold weather, a heat pump can move heat from the cool outdoors to warm a house; the pump may also be designed to move heat from the house to the warmer outdoors in warm weather. As they transfer heat rather than generating heat, they are more energy-efficient than other ways of heating or cooling a home.

<span class="mw-page-title-main">Chiller</span> Machine that removes heat from a liquid coolant via vapor compression

A chiller is a machine that removes heat from a liquid coolant via a vapor-compression, absorption refrigeration, or absorption refrigeration cycles. This liquid can then be circulated through a heat exchanger to cool equipment, or another process stream. As a necessary by-product, refrigeration creates waste heat that must be exhausted to ambience, or for greater efficiency, recovered for heating purposes. Vapor compression chillers may use any of a number of different types of compressors. Most common today are the hermetic scroll, semi-hermetic screw, or centrifugal compressors. The condensing side of the chiller can be either air or water cooled. Even when liquid cooled, the chiller is often cooled by an induced or forced draft cooling tower. Absorption and adsorption chillers require a heat source to function.

<span class="mw-page-title-main">Refrigerator</span> Appliance for cold food storage

A refrigerator, colloquially fridge, is a commercial and home appliance consisting of a thermally insulated compartment and a heat pump that transfers heat from its inside to its external environment so that its inside is cooled to a temperature below the room temperature. Refrigeration is an essential food storage technique around the world. The low temperature lowers the reproduction rate of bacteria, so the refrigerator reduces the rate of spoilage. A refrigerator maintains a temperature a few degrees above the freezing point of water. The optimal temperature range for perishable food storage is 3 to 5 °C. A similar device that maintains a temperature below the freezing point of water is called a freezer. The refrigerator replaced the icebox, which had been a common household appliance for almost a century and a half. The United States Food and Drug Administration recommends that the refrigerator be kept at or below 4 °C (40 °F) and that the freezer be regulated at −18 °C (0 °F).

Adsorption refrigeration was invented by Michael Faraday in 1821, even though the basis of artificial modern refrigeration dates back to 1748 with William Cullen's experiments. Adsorption is sometimes referred to as solid sorption.

<span class="mw-page-title-main">Icemaker</span> Consumer device for making ice, found inside a freezer

An icemaker, ice generator, or ice machine may refer to either a consumer device for making ice, found inside a home freezer; a stand-alone appliance for making ice, or an industrial machine for making ice on a large scale. The term "ice machine" usually refers to the stand-alone appliance.

<span class="mw-page-title-main">Icyball</span> Early refrigerator invented in the 1920s

Icyball is a name given to two early refrigerators, one made by Australian Sir Edward Hallstrom in 1923, and the other design patented by David Forbes Keith of Toronto, and manufactured by American Powel Crosley Jr., who bought the rights to the device. Both devices are unusual in design in that they did not require the use of electricity for cooling. They can run for a day on a cup of kerosene, allowing rural users lacking electricity the benefits of refrigeration.

<span class="mw-page-title-main">Absorption refrigerator</span> Refrigerator that uses a heat source

An absorption refrigerator is a refrigerator that uses a heat source to provide the energy needed to drive the cooling process. Solar energy, burning a fossil fuel, waste heat from factories, and district heating systems are examples of convenient heat sources that can be used. An absorption refrigerator uses two coolants: the first coolant performs evaporative cooling and then is absorbed into the second coolant; heat is needed to reset the two coolants to their initial states. Absorption refrigerators are commonly used in recreational vehicles (RVs), campers, and caravans because the heat required to power them can be provided by a propane fuel burner, by a low-voltage DC electric heater or by a mains-powered electric heater. Absorption refrigerators can also be used to air-condition buildings using the waste heat from a gas turbine or water heater in the building. Using waste heat from a gas turbine makes the turbine very efficient because it first produces electricity, then hot water, and finally, air-conditioning—trigeneration.

<span class="mw-page-title-main">Vapor-compression refrigeration</span> Refrigeration process

Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings and automobiles. It is also used in domestic and commercial refrigerators, large-scale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services. Oil refineries, petrochemical and chemical processing plants, and natural gas processing plants are among the many types of industrial plants that often utilize large vapor-compression refrigeration systems. Cascade refrigeration systems may also be implemented using two compressors.

Solar air conditioning, or "solar-powered air conditioning", refers to any air conditioning (cooling) system that uses solar power.

<span class="mw-page-title-main">Air source heat pump</span> Most common type of heat pump

An air source heat pump (ASHP) is a heat pump that can absorb heat from air outside a building and release it inside; it uses the same vapor-compression refrigeration process and much the same equipment as an air conditioner, but in the opposite direction. ASHPs are the most common type of heat pump and, usually being smaller, tend to be used to heat individual houses or flats rather than blocks, districts or industrial processes.

<span class="mw-page-title-main">Heat pump and refrigeration cycle</span> Mathematical models of heat pumps and refrigeration

Thermodynamic heat pump cycles or refrigeration cycles are the conceptual and mathematical models for heat pump, air conditioning and refrigeration systems. A heat pump is a mechanical system that transmits heat from one location at a certain temperature to another location at a higher temperature. Thus a heat pump may be thought of as a "heater" if the objective is to warm the heat sink, or a "refrigerator" or “cooler” if the objective is to cool the heat source. The operating principles in both cases are the same; energy is used to move heat from a colder place to a warmer place.

Natural refrigerants are considered substances that serve as refrigerants in refrigeration systems. They are alternatives to synthetic refrigerants such as chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), and hydrofluorocarbon (HFC) based refrigerants. Unlike other refrigerants, natural refrigerants can be found in nature and are commercially available thanks to physical industrial processes like fractional distillation, chemical reactions such as Haber process and spin-off gases. The most prominent of these include various natural hydrocarbons, carbon dioxide, ammonia, and water. Natural refrigerants are preferred actually in new equipment to their synthetic counterparts for their presumption of higher degrees of sustainability. With the current technologies available, almost 75 percent of the refrigeration and air conditioning sector has the potential to be converted to natural refrigerants.

HVAC is a major sub discipline of mechanical engineering. The goal of HVAC design is to balance indoor environmental comfort with other factors such as installation cost, ease of maintenance, and energy efficiency. The discipline of HVAC includes a large number of specialized terms and acronyms, many of which are summarized in this glossary.

Variable refrigerant flow (VRF), also known as variable refrigerant volume (VRV), is an HVAC technology invented by Daikin Industries, Ltd. in 1982. Similar to ductless mini-split systems, VRFs use refrigerant as the primary cooling and heating medium, and are usually less complex than conventional chiller-based systems. This refrigerant is conditioned by one or more condensing units, and is circulated within the building to multiple indoor units. VRF systems, unlike conventional chiller-based systems, allow for varying degrees of cooling in more specific areas, may supply hot water in a heat recovery configuration without affecting efficiency, and switch to heating mode during winter without additional equipment, all of which may allow for reduced energy consumption. Also, air handlers and large ducts are not used which can reduce the height above a dropped ceiling as well as structural impact as VRF uses smaller penetrations for refrigerant pipes instead of ducts.

<span class="mw-page-title-main">Hygroscopic cycle</span> Thermodynamic cycle converting thermal energy into mechanical power

The Hygroscopic cycle is a thermodynamic cycle converting thermal energy into mechanical power by the means of a steam turbine. It is similar to the Rankine cycle using water as the motive fluid but with the novelty of introducing salts and their hygroscopic properties for the condensation. The salts are desorbed in the boiler or steam generator, where clean steam is released and superheated in order to be expanded and generate power through the steam turbine. Boiler blowdown with the concentrated hygroscopic compounds is used thermally to pre-heat the steam turbine condensate, and as reflux in the steam-absorber.

Heat exchangers are devices that transfer heat to achieve desired heating or cooling. An important design aspect of heat exchanger technology is the selection of appropriate materials to conduct and transfer heat fast and efficiently.

<span class="mw-page-title-main">Absorption heat transformer</span> Device which transfers heat from an intermediate temperature to a high temperature


An absorption heat transformer (AHT) is a device which transfers heat from an intermediate temperature level to a high temperature level by means of an absorption process. It is driven by the temperature difference between the intermediate temperature and a low temperature level. The absorption heat transformer splits a heat flow at an intermediate temperature level in two heat flows, at a higher (revaluated) temperature level and at a lower temperature level . Such a device is also denominated type II absorption heat pump or booster heat pump. Absorption heat transformers are especially suitable for heat recovery from industrial processes, its main advantage being the capacity to upgrade to a usable level the temperature of waste heat streams using only negligible quantities of electrical energy and no additional primary energy.

References

  1. 1 2 3 "Absorption heat pump / Industrial Heat Pumps". industrialheatpumps.nl. Retrieved 2020-07-14.
  2. Romero, Rosenberg J.; Silva-Sotelo, Sotsil (2017-06-28), Mendes, Marisa Fernandes (ed.), "Energy Evaluation of the Use of an Absorption Heat Pump in Water Distillation Process", Distillation – Innovative Applications and Modeling, InTech, doi: 10.5772/67094 , ISBN   978-953-51-3201-1 , retrieved 2020-07-14
  3. 1 2 3 4 5 6 7 8 9 10 Berntsson, Thore; Harvey, Simon; Morandin, Matteo (2013-01-01), Klemeš, Jiří J. (ed.), "5 – Application of Process Integration to the Synthesis of Heat and Power Utility Systems Including Combined Heat and Power (CHP) and Industrial Heat Pumps", Handbook of Process Integration (PI), Woodhead Publishing Series in Energy, Woodhead Publishing, pp. 168–200, doi:10.1533/9780857097255.2.168, ISBN   978-0-85709-593-0 , retrieved 2020-07-14
  4. 1 2 3 4 5 6 7 8 9 10 11 "吸收式热泵- 暖通空调百科 暖通空调在线". baike.51hvac.com. Retrieved 2020-07-16.
  5. 1 2 Shi, Wenxing.; 石文星. (2016). Kong qi diao jie yong zhi leng ji shu = Refrigeration technology for air conditioning. Tian, Zhangqing, Wang, Baolong, 田长青, 王宝龙 (Di 5 ban ed.). Beijing: Zhong guo jian zhu gong ye chu ban she. p. 102. ISBN   978-7-112-18904-5. OCLC   1020344515.
  6. 1 2 3 4 Cudok, Falk & Ziegler, Felix. "ABSORPTION HEAT CONVERTER AND THE CHARACTERISTIC EQUATION METHOD". Conference: International Congress of Refrigeration.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. 1 2 Rosenberg J Romero; Antonio Rodriguez-Martinez; Jesus Cerezo; W. Rivera (2011). "Comparison of double stage heat transformer with double absorption heat transformer operating with carrol water for industrial waste heat recovery". Chemical Engineering Transactions. 25: 129–134. doi:10.3303/CET1125022.
  8. "Absorption heat pump Type1". industrial.hitachiaircon.com. Retrieved 2020-07-14.
  9. 1 2 3 "万方数据知识服务平台". d.wanfangdata.com.cn. doi:10.3969/j.issn.1009-8402.2018.11.016 . Retrieved 2020-07-15.
  10. "Absorption heat pump Type2". industrial.hitachiaircon.com. Retrieved 2020-07-14.
  11. 1 2 3 4 "Absorption Heat Pumps". Energy.gov. Retrieved 2020-07-16.
  12. 1 2 "Development of a thermal energy storage model for EnergyPlus" (PDF). 2004. Archived from the original (PDF) on 2012-02-11. Retrieved 2008-04-06.
  13. "Solar Cooling." Archived 2011-07-06 at the Wayback Machine www.solid.at. Accessed on 1 July 2008
  14. Gearoid Foley; Robert DeVault; Richard Sweetser. "The Future of Absorption Technology in America" (PDF). U.S. DOE Energy Efficiency and Renewable Energy (EERE). Archived from the original (PDF) on 28 November 2007. Retrieved 2007-11-08.
  15. "Ice-cooling System Reduces Environmental Burden". The New Otani News. New Otani Club International members. 28 June 2000. Archived from the original on 7 October 2007. Retrieved 3 May 2012.