Accord.NET

Last updated
Accord.NET
Original author César Roberto de Souza
Initial releaseMay 20, 2010;15 years ago (2010-05-20) [1]
Stable release
3.8.0 / October 22, 2017;8 years ago (2017-10-22)
Preview release
3.8.0 / October 22, 2017;8 years ago (2017-10-22)
Repository
Written inC#
Operating system Cross-platform
Type Framework
License LGPLv3 and partly GPLv3
Website www.accord-framework.net

Accord.NET is a framework for scientific computing in .NET. The source code of the project is available under the terms of the Gnu Lesser Public License, version 2.1.

Contents

The framework comprises a set of libraries that are available in source code as well as via executable installers and NuGet packages. The main areas covered include numerical linear algebra, numerical optimization, statistics, machine learning, artificial neural networks, signal and image processing, and support libraries (such as graph plotting and visualization). [2] [3] The project was originally created to extend the capabilities of the AForge.NET Framework, but has since incorporated AForge.NET inside itself. Newer releases have united both frameworks under the Accord.NET name.

The Accord.NET Framework has been featured in multiple books such as Mastering .NET Machine Learning [4] by PACKT publishing and F# for Machine Learning Applications, [5] featured in QCON San Francisco, [6] and currently accumulates more than 1,500 forks in GitHub. [7]

Multiple scientific publications have been published with the use of the framework. [8] [9] [10] [11] [12] [13]

See also

References

  1. "Machine learning, computer vision, statistics and general scientific computing for .NET: Accord-net/framework". GitHub . 2018-12-21.
  2. Greg Duncan. Portable Image and Video processing with help from AForge.NET and Accord.NET. Channel 9, November 2014. Web extract
  3. Accord project on Open Hub. Web extract
  4. "Mastering .NET Machine Learning". www.packtpub.com.[ permanent dead link ]
  5. "F# for Machine Learning Essentials". www.packtpub.com. Archived from the original on 2017-08-05. Retrieved 2017-08-04.
  6. "NET Machine Learning: F# and Accord.NET". InfoQ.
  7. Accord.NET Framework project on GitHub
  8. Blamey, Ben; Crick, Tom; Oatley, Giles (2013). "'The First Day of Summer': Parsing Temporal Expressions with Distributed Semantics" (PDF). Research and Development in Intelligent Systems XXX (PDF). Springer, Cham. pp. 389–402. doi:10.1007/978-3-319-02621-3_29. ISBN   978-3-319-02620-6.
  9. Mueller, Wojciech; Nowakowski, Krzysztof; Tomczak, Robert J.; Kujawa, Sebastian; Rudowicz-Nawrocka, Janina; Idziaszek, Przemysław; Zawadzki, Adrian (2013-07-19). "IT system supporting acquisition of image data used in the identification of grasslands". In Wang, Yulin; Yi, Xie (eds.). Fifth International Conference on Digital Image Processing (ICDIP 2013). Vol. 8878. International Society for Optics and Photonics. pp. 88781T–88781T–4. doi:10.1117/12.2031602. S2CID   368511.
  10. Arriaga, Julio; Kossan, George; Cody, Martin; Vallejo, Edgar; Taylor, Charles (2013). "Acoustic sensor arrays for understanding bird communication. Identifying Cassin's Vireos using SVMs and HMMs". Advances in Artificial Life, ECAL 2013: 827–828. CiteSeerX   10.1.1.474.7109 . doi:10.7551/978-0-262-31709-2-ch120. ISBN   9780262317092.
  11. Keramitsoglou, I.; Kiranoudis, C. T.; Weng, Q. (September 2013). "Downscaling Geostationary Land Surface Temperature Imagery for Urban Analysis". IEEE Geoscience and Remote Sensing Letters. 10 (5): 1253–1257. Bibcode:2013IGRSL..10.1253K. doi:10.1109/lgrs.2013.2257668. ISSN   1545-598X. S2CID   8990560.
  12. Afif, Mohammed H.; Hedar, Abdel-Rahman; Hamid, Taysir H. Abdel; Mahdy, Yousef B. (2012-12-08). "Support Vector Machines with Weighted Powered Kernels for Data Classification". Advanced Machine Learning Technologies and Applications. Communications in Computer and Information Science. Vol. 322. pp. 369–378. doi:10.1007/978-3-642-35326-0_37. ISBN   978-3-642-35325-3.
  13. De Souza, Cesar Roberto (2017). "Procedural Generation of Videos to Train Deep Action Recognition Networks". Computer Vision and Pattern Recognition. 2017: 4757–4767. arXiv: 1612.00881 via CVPR Open Access.