Accordion effect

Last updated
A moving line of cars, a situation susceptible to the accordion effect. Tunnel Pragsattel.jpg
A moving line of cars, a situation susceptible to the accordion effect.

In physics, the accordion effect (also known as the slinky effect, concertina effect, elastic band effect, and string instability) occurs when fluctuations in the motion of a traveling body cause disruptions in the flow of elements following it. This can happen in road traffic, foot marching, bicycle and motor racing, and, in general, to processes in a pipeline. These are examples of nonlinear processes. The accordion effect generally decreases the throughput of the system in which it occurs.

Contents

In traffic

The accordion effect in road traffic refers to the typical decelerations and accelerations of a vehicle when the vehicle in front decelerates and accelerates. These fluctuations in speed propagate backwards and typically get bigger and bigger further down the line, resulting in reduced throughput of road traffic. For this reason, the Norwegian Public Roads Administration recommends that each driver should try to follow the accelerations of the vehicle in front closely, and keeping a steady gap that is neither too small or large. [1] Too small gaps and sudden braking can lead to rear ending.[ citation needed ]

In motorsports

In the Formula One 2020 Tuscan Grand Prix, an accordion effect after the restart under the safety car caused five of the last cars in the field to crash. [2] Data analysis of the crash showed that each consecutive driver accelerated faster and faster, and also that each consecutive driver braked later and later. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Anti-lock braking system</span> Safety anti-skid braking system used on aircraft and land vehicles

An anti-lock braking system (ABS) is a safety anti-skid braking system used on aircraft and on land vehicles, such as cars, motorcycles, trucks, and buses. ABS operates by preventing the wheels from locking up during braking, thereby maintaining tractive contact with the road surface and allowing the driver to maintain more control over the vehicle.

<span class="mw-page-title-main">Platoon (automobile)</span> Group of vehicles travelling separately but following another

In transportation, platooning or flocking is a method for driving a group of vehicles together. It is meant to increase the capacity of roads via an automated highway system.

g-force Term for accelerations felt as weight in multiples of standard gravity

The g-force or gravitational force equivalent is mass-specific force (force per unit mass), expressed in units of standard gravity (g, not to be confused with "g", the symbol for grams). It is used for sustained accelerations, that cause a perception of weight. For example, an object at rest on Earth's surface is subject to 1 g, equaling the conventional value of gravitational acceleration on Earth, about 9.8 m/s2. More transient acceleration, accompanied with significant jerk, is called shock.

<span class="mw-page-title-main">Lowsider</span>

The lowsider or lowside is a type of motorcycle or bicycle crash usually occurring in a turn. It is caused when either the front or rear wheel slides out as a result of either too much braking into the corner, too much acceleration through or out of the corner, or too much speed carried into or through the corner for the available grip. It may also be caused by unexpected slippery or loose material on the road surface.

<span class="mw-page-title-main">Tailgating</span> Unsafe driving practice when a driver follows another too closely

Tailgating is the action of a driver driving behind another vehicle while not leaving sufficient distance to stop without causing a collision if the vehicle in front stops suddenly.

<span class="mw-page-title-main">Advanced driver-assistance system</span> Electronic systems that help a vehicle driver while driving or parking

An advanced driver-assistance system (ADAS) includes technologies that assist drivers with the safe operation of a vehicle. Through a human-machine interface, ADAS increases car and road safety. ADAS uses automated technology, such as sensors and cameras, to detect nearby obstacles or driver errors, and respond accordingly. ADAS can enable various levels of autonomous driving.

<span class="mw-page-title-main">Engine braking</span> Retarding forces within an engine used to slow a vehicle

Engine braking occurs when the retarding forces within an internal combustion engine are used to slow down a motor vehicle, as opposed to using additional external braking mechanisms such as friction brakes or magnetic brakes.

Traffic waves, also called stop waves, ghost jams, traffic snakes or traffic shocks, are traveling disturbances in the distribution of cars on a highway. Traffic waves travel backwards relative to the cars themselves. Relative to a fixed spot on the road the wave can move with, or against the traffic, or even be stationary. Traffic waves are a type of traffic jam. A deeper understanding of traffic waves is a goal of the physical study of traffic flow, in which traffic itself can often be seen using techniques similar to those used in fluid dynamics. It is related to the accordion effect.

<span class="mw-page-title-main">Trail braking</span> Driving and motorcycle riding technique where the brakes are used

Trail braking is a driving and motorcycle riding technique where the brakes are used beyond the entrance to a turn (turn-in), and then gradually released. Depending on a number of factors, the driver fully releases brake pressure at any point between turn-in and the apex of the turn.

<span class="mw-page-title-main">Impact attenuator</span> Safety device in traffic management used to soften the blows of car crashes

An impact attenuator, also known as a crash cushion, crash attenuator, or cowboy cushion, is a device intended to reduce the damage to structures, vehicles, and motorists resulting from a motor vehicle collision. Impact attenuators are designed to absorb the colliding vehicle's kinetic energy. They may also be designed to redirect the vehicle away from the hazard or away from roadway machinery and workers. Impact attenuators are usually placed in front of fixed structures near highways, such as gore points, crash barrier introductions, or overpass supports. Temporary versions may be used for road construction projects.

<span class="mw-page-title-main">Racing line</span> Term in motorsports

In motorsport, the racing line is the optimal path around a race course. In most cases, the line makes use of the entire width of the track to lengthen the radius of a turn: entering at the outside edge, touching the "apex"—a point on the inside edge—then exiting the turn by returning outside.

Clutch control refers to the act of controlling the speed of a vehicle with a manual transmission by partially engaging the clutch plate, using the clutch pedal instead of the accelerator pedal. The purpose of a clutch is in part to allow such control; in particular, a clutch provides transfer of torque between shafts spinning at different speeds. In the extreme, clutch control is used in performance driving, such as starting from a dead stop with the engine producing maximum torque at high RPM.

<span class="mw-page-title-main">Three-phase traffic theory</span> Theory of traffic flow

Three-phase traffic theory is a theory of traffic flow developed by Boris Kerner between 1996 and 2002. It focuses mainly on the explanation of the physics of traffic breakdown and resulting congested traffic on highways. Kerner describes three phases of traffic, while the classical theories based on the fundamental diagram of traffic flow have two phases: free flow and congested traffic. Kerner’s theory divides congested traffic into two distinct phases, synchronized flow and wide moving jam, bringing the total number of phases to three:

<span class="mw-page-title-main">Energy-efficient driving</span> Driving using techniques that reduce fuel consumption

Energy-efficient driving techniques are used by drivers who wish to reduce their fuel consumption, and thus maximize fuel efficiency. The use of these techniques is called "hypermiling".

<span class="mw-page-title-main">Collision avoidance system</span> Motorcar safety system

A collision avoidance system (CAS), also known as a pre-crash system, forward collision warning system (FCW), or collision mitigation system, is an advanced driver-assistance system designed to prevent or reduce the severity of a collision. In its basic form, a forward collision warning system monitors a vehicle's speed, the speed of the vehicle in front of it, and the distance between the vehicles, so that it can provide a warning to the driver if the vehicles get too close, potentially helping to avoid a crash. Various technologies and sensors that are used include radar (all-weather) and sometimes laser (LIDAR) and cameras to detect an imminent crash. GPS sensors can detect fixed dangers such as approaching stop signs through a location database. Pedestrian detection can also be a feature of these types of systems.

In traffic flow theory, Newell’s car-following model is a method used to determine how vehicles follow one another on a roadway. The main idea of this model is that a vehicle will maintain a minimum space and time gap between it and the vehicle that precedes it. Thus, under congested conditions, if the leading car changes its speed, the following vehicle will also change speed at a point in time-space along the traffic wave speed, -w.

Sudden unintended acceleration (SUA) is the unintended, unexpected, uncontrolled acceleration of a vehicle, often accompanied by an apparent loss of braking effectiveness. Such problems may be caused by driver error, mechanical or electrical problems, or some combination of these factors. The US National Highway Traffic Safety Administration estimates 16,000 accidents per year in the United States occur when drivers intend to apply the brake but mistakenly apply the accelerator.

<span class="mw-page-title-main">Traffic congestion reconstruction with Kerner's three-phase theory</span>

Vehicular traffic can be either free or congested. Traffic occurs in time and space, i.e., it is a spatiotemporal process. However, usually traffic can be measured only at some road locations. For efficient traffic control and other intelligent transportation systems, the reconstruction of traffic congestion is necessary at all other road locations at which traffic measurements are not available. Traffic congestion can be reconstructed in space and time based on Boris Kerner’s three-phase traffic theory with the use of the ASDA and FOTO models introduced by Kerner. Kerner's three-phase traffic theory and, respectively, the ASDA/FOTO models are based on some common spatiotemporal features of traffic congestion observed in measured traffic data.

The Cooperative Adaptive Cruise Control (CACC) is an extension to the adaptive cruise control (ACC) concept using Vehicle-to-Everything (V2X) communication. CACC realises longitudinal automated vehicle control. In addition to the feedback loop used in the ACC, which uses Radar, Camera and/or LIDAR measurements to derive the range to the vehicle in front, the preceding vehicle's acceleration is used in a feed-forward loop. The preceding vehicle's acceleration is obtained from the Cooperative Awareness Messages it transmits using ETSI ITS-G5, DSRC / WAVE technology or LTE-V2X PC5 interface as part of the C-V2X technology. Generally, these messages are transmitted several times per second by future vehicles equipped with ITS capabilities.

<span class="mw-page-title-main">2020 Tuscan Grand Prix</span> Formula One race

The 2020 Tuscan Grand Prix was a Formula One motor race held on 13 September 2020 at the Autodromo Internazionale del Mugello in Scarperia e San Piero, Tuscany, Italy. The race was the ninth round of the 2020 Formula One World Championship and the first race of the season with spectators. As of 2023, this is the only Tuscan Grand Prix to be held and also the only Formula One race to be held at the Mugello circuit.

References