Adilson E. Motter | |
---|---|
Born | Brazil | January 1, 1974
Known for | Cascading failures in large-scale networks Synthetic rescues in metabolic networks Mechanical metamaterials with negative compressibility Doubly transient and relativistic chaos Converse symmetry breaking in network dynamics |
Awards | Sloan Research Fellow (2009) NSF CAREER Award (2011) APS Fellow (2013) Erdös-Rényi Prize (2013) Simons Foundation Fellow (2015) AAAS Fellow (2015) NetSci Fellow (2020) CSS Senior Scientific Award (2022) |
Scientific career | |
Fields | Physics, applied math |
Institutions | Northwestern University |
Adilson E. Motter (born January 1, 1974, in Brazil) is the Charles E. and Emma H. Morrison Professor of Physics at Northwestern University, where he has helped develop the concept of synthetic rescue in network biology as well as methods to control the nonlinear dynamics of complex networks. In joint work with Takashi Nishikawa, he discovered the phenomenon of converse symmetry breaking (also referred to as asymmetry-induced symmetry). [1] Motter's research is focused on complex systems and nonlinear phenomena, primarily involving complex networks, systems biology, chaos and statistical physics.
Motter has contributed to the study of nonlinear phenomena in complex systems. He and his collaborators have established conditions for the synchronization of power grids [2] [3] and other complex networks. [4] [5] Together with his former student Z. Nicolaou, he designed a class of mechanical metamaterials that exhibit longitudinal negative compressibility. [6] He has devised local methods for cascade control in distributed systems [7] and his team advanced the large-scale modeling of cascading failures. [8] His group has studied implications of these methods for the recovery of lost function in biological [9] [10] and ecological [11] [12] networks and for the control of complex networks in general. [13] [14] [15] His first publication in network science established the three degrees of separation for English words. [16]
In other areas, most noticeably chaos theory, he is known for accommodating the formalism of chaos theory within general relativity. [17] Along with colleagues, he also formalized the concept of doubly transient chaos in dissipative dynamical systems [18] and discovered that network dynamics can exhibit sensitive dependence on network structure much in the same way chaotic dynamics exhibits sensitive dependence on initial conditions or parameters. [19]
Together with Marc Timme, he wrote the review “Antagonistic Phenomena in Network Dynamics”, which discusses a variety of seemly paradoxical or highly counterintuitive effects in collective network dynamics. [20]
Motter is a Fellow of the American Physical Society. He was selected as a Sloan Research Fellow in 2009, received an NSF CAREER Award in 2011, and was awarded the Erdös-Rényi Prize in Network Science in 2013. In 2014 he was identified among the 30 most promising scientists under the age of 40 born in Latin America, according to a survey conducted jointly by the magazine Qué Pasa and the blog LatinAmericanScience.org. [21] In 2015, the Simons Foundation named Motter one of their Fellows in Theoretical Physics. He is an elected Fellow of the American Association for the Advancement of Science (AAAS) and in 2020 was named a Fellow of the Network Science Society. In 2022, Motter received the Senior Scientific Award of the Complex Systems Society.
In chaos theory, the butterfly effect is the sensitive dependence on initial conditions in which a small change in one state of a deterministic nonlinear system can result in large differences in a later state.
Chaos theory is an interdisciplinary area of scientific study and branch of mathematics focused on underlying patterns and deterministic laws of dynamical systems that are highly sensitive to initial conditions, and were once thought to have completely random states of disorder and irregularities. Chaos theory states that within the apparent randomness of chaotic complex systems, there are underlying patterns, interconnection, constant feedback loops, repetition, self-similarity, fractals, and self-organization. The butterfly effect, an underlying principle of chaos, describes how a small change in one state of a deterministic nonlinear system can result in large differences in a later state. A metaphor for this behavior is that a butterfly flapping its wings in Texas can cause a tornado in Brazil.
A power outage is the loss of the electrical power network supply to an end user.
A cascading failure is a failure in a system of interconnected parts in which the failure of one or few parts leads to the failure of other parts, growing progressively as a result of positive feedback. This can occur when a single part fails, increasing the probability that other portions of the system fail. Such a failure may happen in many types of systems, including power transmission, computer networking, finance, transportation systems, organisms, the human body, and ecosystems.
Yoshiki Kuramoto is a Japanese physicist in the Nonlinear Dynamics group at Kyoto University who formulated the Kuramoto model and is also known for the Kuramoto–Sivashinsky equation. He is also the discoverer of so-called chimera states in networks of coupled oscillators.
A coupled map lattice (CML) is a dynamical system that models the behavior of nonlinear systems. They are predominantly used to qualitatively study the chaotic dynamics of spatially extended systems. This includes the dynamics of spatiotemporal chaos where the number of effective degrees of freedom diverges as the size of the system increases.
Theo Geisel is a German physicist. Geisel is a director at the Max Planck Institute for Dynamics and Self-Organization and professor of theoretical physics at the University of Göttingen. His research is primarily concerned with the behavior of complex systems ranging from theoretical investigations in quantum chaos to nonlinear phenomena occurring in the brain.
Peter Grassberger is a retired professor who worked in statistical and particle physics. He made contributions to chaos theory, where he introduced the idea of correlation dimension, a means of measuring a type of fractal dimension of the strange attractor.
Eshel Ben-Jacob, was a theoretical and experimental physicist at Tel Aviv University, holder of the Maguy-Glass Chair in Physics of Complex Systems, and Fellow of the Center for Theoretical Biological Physics (CTBP) at Rice University. During the 1980s he became a leader in the theory of self-organization and pattern formation in open systems, later extending this work to adaptive complex systems and biocomplexity. In the late 1980s, he turned to study of bacterial self-organization, He developed new pattern forming bacteria species, becoming a pioneer in the study of bacterial intelligence and social behaviors of bacteria.
Mechanical metamaterials are artificial structures with mechanical properties defined by their structure rather than their composition. They can be seen as a counterpart to the rather well-known family of optical metamaterials. They are often also termed elastodynamic metamaterials and include acoustic metamaterials as a special case of vanishing shear. Their mechanical properties can be designed to have values which cannot be found in nature.
Jürgen Kurths is a German physicist and mathematician. He is senior advisor in the research department Complexity Sciences of the Potsdam Institute for Climate Impact Research, a Professor of Nonlinear Dynamics at the Institute of Physics at the Humboldt University, Berlin, and a 6th-century chair for Complex Systems Biology at the Institute for Complex Systems and Mathematical Biology at Kings College, Aberdeen University (UK). His research is mainly concerned with nonlinear physics and complex systems sciences and their applications to challenging problems in Earth system, physiology, systems biology and engineering.
Celso Grebogi is a Brazilian theoretical physicist who works in the area of chaos theory. He is one among the pioneers in the nonlinear and complex systems and chaos theory. Currently he works at the University of Aberdeen as the "Sixth Century Chair in Nonlinear and Complex Systems". He has done extensive research in the field of plasma physics before his work on the theory of dynamical systems. He and his colleagues have shown with a numerical example that one can convert a chaotic attractor to any one of numerous possible attracting time-periodic motions by making only small time-dependent perturbations of an available system parameter. This article is considered as one among the classic works in the control theory of chaos and their control method is known as the OGY method. He was listed in the 2016 Thomson Reuters Citation Laureates.
Edward Ott is an American physicist most noted for his contributions to the development of chaos theory.
Raymond Ethan Goldstein FRS FInstP is Schlumberger Professor of Complex Physical Systems in the Department of Applied Mathematics and Theoretical Physics (DAMTP) at the University of Cambridge and a Fellow of Churchill College, Cambridge.
Soumitro Banerjee is an Indian electrical engineer and director of the Indian Institute of Science Education and Research, Kolkata. He is known for his studies on bifurcation phenomena in power electronic circuits and is an elected fellow of all three major Indian science academies: the National Academy of Sciences, India, Indian Academy of Sciences, and Indian National Science Academy. He is also a fellow of The World Academy of Sciences, Institute of Electrical and Electronics Engineers, West Bengal Academy of Sciences and the Indian National Academy of Engineering. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards for his contributions to Engineering Sciences in 2003.
Kenju Otsuka is a Japanese engineer and physicist concerned with lasers and quantum electronics.
Muthusamy Lakshmanan is an Indian theoretical physicist currently working as Professor of Eminence at the Department of Nonlinear Dynamics of Bharathidasan University. Presently he is the DST-SERB National Science Chair awarded by the Science and Engineering Research Board, Department of Science and Technology. He has held several research fellowships which included Raja Ramanna fellowship of the Department of Atomic Energy, Alexander von Humboldt fellowship, Japan Society for the Promotion of Science fellowship, Royal Society Nuffield Foundation fellowship, and NASI-Senior Scientist Platinum Jubilee Fellowship. In the year 2021, on August 15, he was conferred with the Dr. A. P. J Abdul Kalam Award by the Government of Tamil Nadu.
Sergej Flach is a theoretical physicist whose research has spanned a number of scientific fields in his career. With about 240 publications to his name, his research has been cited over 16,000 times giving him an h-index of 58 and i10-index of 174. He is a member of the American Physical Society, German Physical Society, Korean Physical Society, and New Zealand Institute of Physics. He is an editorial board member of Chaos (2016-) and was an editorial board member of Physical Review E (2009-2011).
Stefano Boccaletti is an Italian physicist. He is senior researcher at the CNR's Institute for Complex Systems in Florence, Italy. His research is mainly concerned with nonlinear and statistical physics, and complex systems sciences with applications to systems biology and systems medicine, data and networks sciences, social science and engineering, among others.
Raissa M. D'Souza is the Associate Dean of Research for the College of Engineering and a Professor of Computer Science and Mechanical Engineering at the University of California, Davis as well as an External Professor and member of the Science Board at the Santa Fe Institute. She was elected a Fellow of the American Physical Society in 2016 and Fellow of the Network Science Society in 2019. D'Souza works on theory and complex systems.