Alexander Kashlinsky

Last updated

Alexander (Sasha) Kashlinsky (born 1957 in Riga) is an astronomer and cosmologist working at NASA Goddard-Space-Flight-Center, known for work on dark flow [1] and the cosmic infrared background.

Contents

Kashlinsky has been interviewed by Morgan Freeman in season 2 of Through the Wormhole .

Biography

Related Research Articles

<span class="mw-page-title-main">Dark matter</span> Hypothetical form of matter

Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not absorb, reflect, or emit electromagnetic radiation and is, therefore, difficult to detect. Various astrophysical observations – including gravitational effects which cannot be explained by currently accepted theories of gravity unless more matter is present than can be seen – imply dark matter's presence. For this reason, most experts think that dark matter is abundant in the universe and has had a strong influence on its structure and evolution.

<span class="mw-page-title-main">Galaxy groups and clusters</span> Largest known gravitationally bound object in universe; aggregation of galaxies

Galaxy groups and clusters are the largest known gravitationally bound objects to have arisen thus far in the process of cosmic structure formation. They form the densest part of the large-scale structure of the Universe. In models for the gravitational formation of structure with cold dark matter, the smallest structures collapse first and eventually build the largest structures, clusters of galaxies. Clusters are then formed relatively recently between 10 billion years ago and now. Groups and clusters may contain ten to thousands of individual galaxies. The clusters themselves are often associated with larger, non-gravitationally bound, groups called superclusters.

<span class="mw-page-title-main">Galactic Center</span> Rotational center of the Milky Way galaxy

The Galactic Center or Galactic Centre is the rotational center, the barycenter, of the Milky Way galaxy. Its central massive object is a supermassive black hole of about 4 million solar masses, which is called Sagittarius A*, a compact radio source which is almost exactly at the galactic rotational center. The Galactic Center is approximately 8 kiloparsecs (26,000 ly) away from Earth in the direction of the constellations Sagittarius, Ophiuchus, and Scorpius, where the Milky Way appears brightest, visually close to the Butterfly Cluster (M6) or the star Shaula, south to the Pipe Nebula.

The Sunyaev–Zeldovich effect is the spectral distortion of the cosmic microwave background (CMB) through inverse Compton scattering by high-energy electrons in galaxy clusters, in which the low-energy CMB photons receive an average energy boost during collision with the high-energy cluster electrons. Observed distortions of the cosmic microwave background spectrum are used to detect the disturbance of density in the universe. Using the Sunyaev–Zeldovich effect, dense clusters of galaxies have been observed.

<span class="mw-page-title-main">Intermediate-mass black hole</span> Class of black holes with a mass range of 100 to 100000 solar masses

An intermediate-mass black hole (IMBH) is a class of black hole with mass in the range 102–105 solar masses: significantly more than stellar black holes but less than the 105–109 solar mass supermassive black holes. Several IMBH candidate objects have been discovered in our galaxy and others nearby, based on indirect gas cloud velocity and accretion disk spectra observations of various evidentiary strength.

<span class="mw-page-title-main">NGC 404</span> Field dwarf lenticular galaxy in the constellation Andromeda

NGC 404 is a field galaxy located about 10 million light years away in the constellation Andromeda. It was discovered by William Herschel in 1784, and is visible through small telescopes. NGC 404 lies just beyond the Local Group and does not appear gravitationally bound to it. It is located within 7 arc-minutes of second magnitude star Mirach, making it a difficult target to observe or photograph and granting it the nickname "Mirach's Ghost".

<span class="mw-page-title-main">Dark matter halo</span> Theoretical cosmological structure

According to modern models of physical cosmology, a dark matter halo is a basic unit of cosmological structure. It is a hypothetical region that has decoupled from cosmic expansion and contains gravitationally bound matter. A single dark matter halo may contain multiple virialized clumps of dark matter bound together by gravity, known as subhalos. Modern cosmological models, such as ΛCDM, propose that dark matter halos and subhalos may contain galaxies. The dark matter halo of a galaxy envelops the galactic disc and extends well beyond the edge of the visible galaxy. Thought to consist of dark matter, halos have not been observed directly. Their existence is inferred through observations of their effects on the motions of stars and gas in galaxies and gravitational lensing. Dark matter halos play a key role in current models of galaxy formation and evolution. Theories that attempt to explain the nature of dark matter halos with varying degrees of success include cold dark matter (CDM), warm dark matter, and massive compact halo objects (MACHOs).

<span class="mw-page-title-main">NGC 1316</span> Lenticular radio galaxy in the constellation Fornax

NGC 1316 is a lenticular galaxy about 60 million light-years away in the constellation Fornax. It is a radio galaxy and at 1400 MHz is the fourth-brightest radio source in the sky.

<span class="mw-page-title-main">NGC 3227</span> Interacting intermediate spiral galaxy in the constellation Leo

NGC 3227 is an intermediate spiral galaxy that is interacting with the dwarf elliptical galaxy NGC 3226. The two galaxies are one of several examples of a spiral with a dwarf elliptical companion that are listed in the Atlas of Peculiar Galaxies. Both galaxies may be found in the constellation Leo. It is a member of the NGC 3227 Group of galaxies, which is a member of the Leo II Groups, a series of galaxies and galaxy clusters strung out from the right edge of the Virgo Supercluster.

<span class="mw-page-title-main">Bullet Cluster</span> Two colliding clusters of galaxies in constellation Carina

The Bullet Cluster consists of two colliding clusters of galaxies. Strictly speaking, the name Bullet Cluster refers to the smaller subcluster, moving away from the larger one. It is at a comoving radial distance of 1.141 Gpc.

<span class="mw-page-title-main">Abell 520</span> Galaxy cluster in the constellation of Orion

The Abell 520 galaxy cluster possesses an unusual substructure resulting from a major merger. It has been popularly nicknamed The Train Wreck Cluster, due to its chaotic structure, and is classified as a Bautz-Morgan type III cluster. It is at a co-moving radial distance of 811 Mpc (2,645 Mly) and subtends 25 arcminutes on the sky. Analysis of the motions of 293 galaxies in the cluster field suggested that Abell 520 was a cluster forming at the crossing of three filaments of the large scale structure.

<span class="mw-page-title-main">Location of Earth</span> Knowledge of the location of Earth

Knowledge of the location of Earth has been shaped by 400 years of telescopic observations, and has expanded radically since the start of the 20th century. Initially, Earth was believed to be the center of the Universe, which consisted only of those planets visible with the naked eye and an outlying sphere of fixed stars. After the acceptance of the heliocentric model in the 17th century, observations by William Herschel and others showed that the Sun lay within a vast, disc-shaped galaxy of stars. By the 20th century, observations of spiral nebulae revealed that the Milky Way galaxy was one of billions in an expanding universe, grouped into clusters and superclusters. By the end of the 20th century, the overall structure of the visible universe was becoming clearer, with superclusters forming into a vast web of filaments and voids. Superclusters, filaments and voids are the largest coherent structures in the Universe that we can observe. At still larger scales the Universe becomes homogeneous, meaning that all its parts have on average the same density, composition and structure.

<span class="mw-page-title-main">Galaxy filament</span> Largest structures in the universe, made of galaxies

In cosmology, galaxy filaments are the largest known structures in the universe, consisting of walls of gravitationally bound galaxy superclusters. These massive, thread-like formations can reach 80 megaparsecs h−1 and form the boundaries between large voids.

In astrophysics, dark flow is a theoretical non-random component of the peculiar velocity of galaxy clusters. The actual measured velocity is the sum of the velocity predicted by Hubble's Law plus a possible small and unexplained velocity flowing in a common direction.

In astronomy, stellar kinematics is the observational study or measurement of the kinematics or motions of stars through space.

<span class="mw-page-title-main">Local Sheet</span> Nearby extragalactic region of space

The Local Sheet in astronomy is a nearby extragalactic region of space where the Milky Way, the members of the Local Group and other galaxies share a similar peculiar velocity. This region lies within a radius of about 7 Mpc (23 Mly), 0.46 Mpc (1.5 Mly) thick, and galaxies beyond that distance show markedly different velocities. The Local Group has only a relatively small peculiar velocity of 66 km⋅s−1 with respect to the Local Sheet. Typical velocity dispersion of galaxies is only 40 km⋅s−1 in the radial direction. Nearly all nearby bright galaxies belong to the Local Sheet. The Local Sheet is part of the Local Volume and is in the Virgo Supercluster. The Local Sheet forms a wall of galaxies delineating one boundary of the Local Void.

The cosmic age problem is a historical problem in astronomy concerning the age of the universe. The problem was that at various times in the 20th century, some objects in the universe were estimated to be older than the time elapsed since the Big Bang, as estimated from measurements of the expansion rate of the universe known as the Hubble constant, denoted H0. (This is more correctly called the Hubble parameter, since it generally varies with time). If so, this would represent a contradiction, since objects such as galaxies, stars and planets could not have existed in the extreme temperatures and densities shortly after the Big Bang.

References

  1. A. Kashlinsky; F. Atrio-Barandela; D. Kocevski & H. Ebeling (2008). "A measurement of large-scale peculiar velocities of clusters of galaxies: results and cosmological implications" (PDF). Astrophys. J. 686 (2): 49–52. arXiv: 0809.3734 . Bibcode:2008ApJ...686L..49K. doi:10.1086/592947. S2CID   16335692 . Retrieved 2010-07-15. Also, A. Kashlinsky; F. Atrio-Barandela; D. Kocevski & H. Ebeling (2009). "A measurement of large-scale peculiar velocities of clusters of galaxies: technical details" (PDF). Astrophys. J. 691 (2): 1479–1493. arXiv: 0809.3733 . Bibcode:2009ApJ...691.1479K. doi:10.1088/0004-637X/691/2/1479. S2CID   11185723 . Retrieved 2010-07-15.