Cosmic infrared background

Last updated

Cosmic infrared background is infrared radiation caused by stellar dust.

Contents

History

Recognizing the cosmological importance of the darkness of the night sky (Olbers' paradox) and the first speculations on an extragalactic background light dates back to the first half of the 19th century. Despite its importance, the first attempts were made only in the 1950-60s to derive the value of the visual background due to galaxies, at that time based on the integrated starlight of these stellar systems. In the 1960s the absorption of starlight by dust was already taken into account, but without considering the re-emission of this absorbed energy in the infrared. At that time Jim Peebles pointed out, that in a Big Bang-created Universe there must have been a cosmic infrared background (CIB) – different from the cosmic microwave background – that can account for the formation and evolution of stars and galaxies.

In order to produce today's metallicity, early galaxies must have been significantly more powerful than they are today. In the early CIB models the absorption of starlight was neglected, therefore in these models the CIB peaked between 1–10μm wavelengths. These early models have already shown correctly that the CIB was most probably fainter than its foregrounds, and so it was very difficult to observe. Later the discovery and observations of high luminosity infrared galaxies in the vicinity of the Milky Way showed, that the peak of the CIB is most likely at longer wavelengths (around 50μm), and its full power could be ~1−10% of that of the CMB.

As Martin Harwit emphasized, the CIB is very important in the understanding of some special astronomical objects, like quasars or ultraluminous infrared galaxies, which are very bright in the infrared. He also pointed out, that the CIB cause a significant attenuation for very high energy electrons, protons and gamma-rays of the cosmic radiation through inverse Compton scattering, photopion and electron-positron pair production.

In the early 1980s there were only upper limits available for the CIB. The real observations of the CIB began after the era of astronomical satellites working in the infrared, started by the Infrared Astronomy Satellite (IRAS), and followed by the Cosmic Background Explorer (COBE), the Infrared Space Observatory (ISO) and by the Spitzer Space Telescope. Exploration of the CIB was continued by the Herschel Space Observatory, launched in 2009.

The Spitzer wide area surveys have detected anisotropies in the CIB. [1]

A summary on the history of CIB research can be found in the review papers by M.G. Hauser and E. Dwek (2001) [2] and A. Kashlinsky (2005). [3]

Origin of the cosmic infrared background

One of the most important questions about the CIB is the source of its energy. In the early models the CIB was built up from the redshifted spectra of the galaxies found in our cosmic neighborhood. However, these simple models could not reproduce the observed features of the CIB. In the baryonic material of the Universe there are two sources of large amounts of energy: nuclear fusion and gravitation.

Nuclear fusion takes place inside the stars, and we can really see this light redshifted: this is the main source of the cosmic ultraviolet- and visual background. However, a significant amount of this starlight is not observed directly. Dust in the host galaxies can absorb it and re-emit it in the infrared, contributing to the CIB. Although most of today's galaxies contain little dust (e.g. elliptical galaxies are practically dustless), there are some special stellar systems even in our vicinity which are extremely bright in the infrared and at the same time faint (often almost invisible) in the optical. These ultraluminous infrared galaxies (ULIRGs) are just in a very active star formation period: they are just in a collision or in a merge with another galaxy. In the optical this is hidden by the huge amount of dust, and the galaxy is bright in the infrared due to the same reason. Galaxy collisions and mergers were more frequent in the cosmic past: the global star formation rate of the Universe peaked around redshift z = 1...2, and was 10 to 50 times the average value today. These galaxies in the z = 1...2 redshift range give 50 to 70 percent of the full brightness of the CIB.

Another important component of the CIB is the infrared emission by quasars. In these systems most of the gravitational potential energy of the matter falling into the central black hole is converted into X-rays, which would escape unless they are absorbed by the dust torus of the accretion disc. This absorbed light is again re-emitted in the infrared, and in total gives about 20–30% of the full power of the CIB; however at some specific wavelengths this is the dominant source of CIB energy.

A hitherto unrecognised population of intergalactic stars have been shown to explain the CIB as well as the other elements of the diffuse extragalactic background radiation. If intergalactic stars were to account for all of the background anisotropy, it would require a very large population, but this is not excluded by observations and could in fact also explain a fair part of the dark matter problem as well. [4] [5]

Foregrounds

The most important foreground components of the CIB are the following:

These components must be separated for a clear CIB detection.

Observation of the cosmic infrared background

The detection of the CIB is both observationally and astrophysically very challenging. It has a very few characteristics which can be used to separate it from the foregrounds. One major point is, that the CIB must be isotropic, i.e. one has to measure the same CIB value all over the sky. It also lacks suspicious spectral features, since the final shape of its spectrum is the sum of the spectra of sources in the line of sight at various redshifts.

Direct detection

Direct measurements are simple, but very difficult. One just has to measure the total incoming power, and determine the contribution of each sky background component. The measurement has to be repeated in many directions to determine the contribution of the foregrounds. After the removal of all other components the remaining power – if it is the same constant value in any direction – is the CIB at that specific wavelength. In practice, one needs an instrument that is able to perform absolute photometry, i.e. it has some mechanism to fully block incoming light for an accurate zero level determination (cold shutter). Since the instrument parts, including the shutter, have non-zero temperatures and emit in the infrared, this is a very difficult task.

The first, and still the most extensive, direct CIB measurements were performed by the DIRBE instrument of the COBE satellite. After the removal of the precisely determined zodiacal emission contribution (which was based on the measured annual variation) the remaining power at longer infrared wavelength contained basically two components: the CIB and the Galactic cirrus emission. The infrared surface brightness of the Galactic cirrus must correlate with the neutral hydrogen column densities, since they originate from the same, low-density structure. After the removal of the HI-correlated part, the remaining surface brightness was identified as the cosmic infrared background at 60, 100, 140, and 240μm. At shorter wavelengths the CIB level could not be correctly determined.

Later, short-wavelength DIRBE measurements at 2.2 and 3.5μ were combined with the Two Micron Sky Survey (2MASS) source count data, and this led to the detection of the CIB at these two wavelengths.

Fluctuation studies

Since the CIB is an accumulated light of individual sources there is always a somewhat different number of sources in different directions in the field of view of the observer. This cause a variation (fluctuation) in the total amount of observed incoming flux among the different line of sights. These fluctuations are traditionally described by the two dimensional autocorrelation function, or by the corresponding Fourier power spectrum. The detection of fluctuations is easier than the direct CIB measurements, since one does not need to determine the absolute photometric zero point – fluctuations can be derived from differential measurements. On the other hand, fluctuations do not provide an immediate information on the CIB brightness. The measured fluctuation amplitudes either has to be confronted with a CIB model that has a prediction for the fluctuation / absolute level ratio, or it has to be compared with integrated differential light levels of source counts at the same wavelength.

The power spectrum of the CIB is usually presented in a spatial frequency [arcmin−1] vs. fluctuation power [Jy2 sr−1] diagram. It is contaminated by the presence of the power spectrum of foreground components, so that the total power spectrum is:

P(f) = Φ(f)x[PCIB(f) + Pcirr(f) + Pze(f) + Pn(f)]

where P(f), PCIB(f), Pcirr, Pze(f) and Pn(f) are the total, CIB, Galactic cirrus, zodiacal emission and noise (instrument noise) power spectrum components, respectively, and Φ is the power spectrum of the telescope's point spread function.

For most of the infrared zodiacal emission fluctuation are negligible in the "cosmic windows", far from the ecliptic plane. [6]

In the far-infrared the CIB power spectrum can be effectively used to separate it from its strongest foreground, the Galactic cirrus emission. The cirrus emission has a characteristic power spectrum of a power-law (that of a fractal spatial structure) P(f) = P0(f/f0)α, where P is the fluctuation power at the spatial frequency f, P0 is the fluctuation power at the reference spatial frequency f0, and α is the spectral index. α was found to be α≈-3, which is much steeper than the power spectrum of the CIB at low spatial frequencies. The cirrus component can be identified in the power spectrum at low spatial frequencies and then removed from the whole spatial frequency range. The remaining power spectrum – after a careful correction for instrument effects – should be that of the CIB.

Autocorrelation and power spectrum studies resulted in the CIB fluctuation amplitudes at 1.25, 2.2, 3.5, 12–100μm based on the COBE/DIRBE measurements, and later at 90 and 170μm, based on the observations of the ISOPHOT instrument of the Infrared Space Observatory. [7] Recently, the clustering of the galaxies have also been identified in the power spectrum at 160μm using this method. [8]

Source counts

Source counts gives the most extensive picture about the sources building up the CIB. In a source count one tries to detect as many point/compact sources in a certain field of view as possible: this is usually done at multiple wavelengths and is often complemented by other data, e.g. photometry at visual or sub-millimeter wavelengths. In this way, one has information on the broad band spectral characteristics of the detected sources, too. The detected point sources have to be distinguished from other contaminating sources, e.g. minor bodies in the Solar System, Galactic stars and cirrus knots (local density enhancements in the Galactic cirrus emission).

Source counts were important tasks for the recent infrared missions like 2MASS or the Infrared Space Observatory (ISO), and is still one of the most important questions the current and near future infrared space instruments (the Spitzer Space Telescope and the Herschel Space Observatory). While ISO was able to resolve about 3–10% of the total CIB light into individual sources (depending on the wavelength), Spitzer measurements have already detected ~30% of the CIB as sources, [9] and this ratio is expected to be ~90% at some wavelengths with the Herschel Space Observatory. [10]

Source count results support the "fast evolution" galaxy models. In these models galaxies nowadays look significantly different than they were at z=1...2, when they were coming through an intense star-formation phase. The source count results exclude the "steady state" scenarios, where z=1...2 galaxies look similar to those we see today in our cosmic neighborhood.

See also

Related Research Articles

Cosmic microwave background Electromagnetic radiation as a remnant from an early stage of the universe in Big Bang cosmology

The cosmic microwave background, in Big Bang cosmology, is electromagnetic radiation which is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all space. It is an important source of data on the early universe because it is the oldest electromagnetic radiation in the universe, dating to the epoch of recombination. With a traditional optical telescope, the space between stars and galaxies is completely dark. However, a sufficiently sensitive radio telescope shows a faint background noise, or glow, almost isotropic, that is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of the CMB in 1965 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s, and earned the discoverers the 1978 Nobel Prize in Physics.

Far-infrared astronomy Scientific study of celestial objects visible in wavelengths of 30-450 μm

Far-infrared astronomy is the branch of astronomy and astrophysics that deals with objects visible in far-infrared radiation.

Wilkinson Microwave Anisotropy Probe NASA satellite of the Explorer program

The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe, was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic microwave background (CMB) – the radiant heat remaining from the Big Bang. Headed by Professor Charles L. Bennett of Johns Hopkins University, the mission was developed in a joint partnership between the NASA Goddard Space Flight Center and Princeton University. The WMAP spacecraft was launched on 30 June 2001 from Florida. The WMAP mission succeeded the COBE space mission and was the second medium-class (MIDEX) spacecraft in the NASA Explorer program. In 2003, MAP was renamed WMAP in honor of cosmologist David Todd Wilkinson (1935–2002), who had been a member of the mission's science team. After nine years of operations, WMAP was switched off in 2010, following the launch of the more advanced Planck spacecraft by European Space Agency (ESA) in 2009.

Cosmic Background Explorer NASA satellite of the Explorer program

The Cosmic Background Explorer, also referred to as Explorer 66, was a NASA satellite dedicated to cosmology, which operated from 1989 to 1993. Its goals were to investigate the cosmic microwave background radiation of the universe and provide measurements that would help shape our understanding of the cosmos.

Hubble Deep Field Multiple exposure image of deep space in the constellation Ursa Major

The Hubble Deep Field (HDF) is an image of a small region in the constellation Ursa Major, constructed from a series of observations by the Hubble Space Telescope. It covers an area about 2.6 arcminutes on a side, about one 24-millionth of the whole sky, which is equivalent in angular size to a tennis ball at a distance of 100 metres. The image was assembled from 342 separate exposures taken with the Space Telescope's Wide Field and Planetary Camera 2 over ten consecutive days between December 18 and 28, 1995.

NGC 300 Spiral galaxy in the constellation Sculptor

NGC 300 (also known as Caldwell 70) is a spiral galaxy in the constellation Sculptor. It is one of the closest galaxies to the Local Group, and probably lies between the latter and the Sculptor Group. It is the brightest of the five main spirals in the direction of the Sculptor Group. It is inclined at an angle of 42° when viewed from Earth and shares many characteristics of the Triangulum Galaxy. It is 94,000 light-years in diameter, somewhat smaller than the Milky Way, and has an estimated mass of (2.9 ± 0.2) × 1010M.

Zone of Avoidance

The Zone of Avoidance (ZOA), or Zone of Galactic Obscuration (ZGO), is the area of the sky that is obscured by the Milky Way.

Observational cosmology Study of the origin of the universe (structure and evolution)

Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors.

Sombrero Galaxy Spiral galaxy in the constellation Virgo

The Sombrero Galaxy is a spiral galaxy in the constellation borders of Virgo and Corvus, being about 9.55 megaparsecs from our galaxy, within the local supercluster. It has a diameter of approximately 15 kiloparsecs, three-tenths the size of the Milky Way. It has a bright nucleus, an unusually large central bulge, and a prominent dust lane in its outer disk, which is viewed almost edge-on. The dark dust lane and the bulge give it the appearance of a sombrero hat. Astronomers initially thought the halo was small and light, indicative of a spiral galaxy; but the Spitzer Space Telescope found that the dust ring was larger and more massive than previously thought, indicative of a giant elliptical galaxy. The galaxy has an apparent magnitude of +8.0, making it easily visible with amateur telescopes, and is considered by some authors to be the galaxy with the highest absolute magnitude within a radius of 10 megaparsecs of the Milky Way. Its large bulge, central supermassive black hole, and dust lane all attract the attention of professional astronomers.

In astronomy, extinction is the absorption and scattering of electromagnetic radiation by dust and gas between an emitting astronomical object and the observer. Interstellar extinction was first documented as such in 1930 by Robert Julius Trumpler. However, its effects had been noted in 1847 by Friedrich Georg Wilhelm von Struve, and its effect on the colors of stars had been observed by a number of individuals who did not connect it with the general presence of galactic dust. For stars that lie near the plane of the Milky Way and are within a few thousand parsecs of the Earth, extinction in the visual band of frequencies is roughly 1.8 magnitudes per kiloparsec.

<i>Planck</i> (spacecraft) European cosmic microwave background observatory; medium-class mission in the ESA Science Programme

Planck was a space observatory operated by the European Space Agency (ESA) from 2009 to 2013, which mapped the anisotropies of the cosmic microwave background (CMB) at microwave and infrared frequencies, with high sensitivity and small angular resolution. The mission substantially improved upon observations made by the NASA Wilkinson Microwave Anisotropy Probe (WMAP). Planck provided a major source of information relevant to several cosmological and astrophysical issues, such as testing theories of the early Universe and the origin of cosmic structure. Since the end of its mission, Planck has defined the most precise measurements of several key cosmological parameters, including the average density of ordinary matter and dark matter in the Universe and the age of the universe.

Megamaser Astrophysical maser, source of stimulated spectral line emission

A megamaser is a type of astrophysical maser, which is a naturally occurring source of stimulated spectral line emission. Megamasers are distinguished from astrophysical masers by their large isotropic luminosity. Megamasers have typical luminosities of 103 solar luminosities (L), which is 100 million times brighter than masers in the Milky Way, hence the prefix mega. Likewise, the term kilomaser is used to describe masers outside the Milky Way that have luminosities of order L, or thousands of times stronger than the average maser in the Milky Way, gigamaser is used to describe masers billions of times stronger than the average maser in the Milky Way, and extragalactic maser encompasses all masers found outside the Milky Way. Most known extragalactic masers are megamasers, and the majority of megamasers are hydroxyl (OH) megamasers, meaning the spectral line being amplified is one due to a transition in the hydroxyl molecule. There are known megamasers for three other molecules: water (H2O), formaldehyde (H2CO), and methine (CH).

Eyes Galaxies Pair of galaxies in the constellation Virgo

The Eyes Galaxies are a pair of galaxies about 52 million light-years away in the constellation Virgo. The pair are members of the string of galaxies known as Markarian's Chain.

Luminous infrared galaxies or LIRGs are galaxies with luminosities, the measurement of brightness, above 1011 L. They are also referred to as submillimeter galaxies (SMGs) through their normal method of detection. LIRGs are more abundant than starburst galaxies, Seyfert galaxies and quasi-stellar objects at comparable luminosity. Infrared galaxies emit more energy in the infrared than at all other wavelengths combined. A LIRG's luminosity is 100 billion times that of our sun.

APM 08279+5255 is a very distant, broad absorption line quasar located in the constellation Lynx. It is magnified and split into multiple images by the gravitational lensing effect of a foreground galaxy through which its light passes. It appears to be a giant elliptical galaxy with a supermassive black hole and associated accretion disk. It possesses large regions of hot dust and molecular gas, as well as regions with starburst activity.

In astronomy, spinning dust emission is a mechanism proposed to explain anomalous microwave emission from the Milky Way. The emission could arise from the electric dipole of very rapidly spinning (10–60 GHz) extremely small (nanometer) dust grains as suggested by Bruce T. Draine and Alex Lazarian in 1998, most likely polycyclic aromatic hydrocarbons. The anomalous emission was first discovered as a by-product of Cosmic Microwave Background observations which make very sensitive measurements of the microwave sky which have to identify and remove contamination from the galaxy. The smallest dust grains are thought to have only hundreds of atoms.

WR 102ka Star in the constellation Sagittarius

WR 102ka, also known as the Peony star, is a slash star that is one of several candidates for the most luminous-known star in the Milky Way.

SPICA (spacecraft) Proposed far-infrared space observatory

The Space Infrared Telescope for Cosmology and Astrophysics (SPICA), was a proposed infrared space telescope, follow-on to the successful Akari space observatory. It was a collaboration between European and Japanese scientists, which was selected in May 2018 by the European Space Agency (ESA) as a finalist for the next Medium class Mission 5 of the Cosmic Vision programme, to launch in 2032. At the time the other two finalists were THESEUS and EnVision, with the latter that was eventually selected for further development. SPICA would have improved on the spectral line sensitivity of previous missions, the Spitzer and Herschel space telescopes, between 30 and 230 µm by a factor of 50—100.

Lockman Hole Area of the sky with minimal amounts of neutral hydrogen

The Lockman Hole is an area of the sky in which minimal amounts of neutral hydrogen gas are observed. Clouds of neutral hydrogen glow faintly with infrared light and obscure distant views at extreme ultraviolet and soft x-ray wavelengths. They interfere with observations at those wavelengths in nearly all other directions since they are common in our galaxy. So the Lockman Hole serves as a relatively clear window on distant objects, which makes it an attractive area of the sky for observational astronomy surveys. It is located near the pointer stars of the Big Dipper in the constellation Ursa Major and is about 15 square degrees in size. It is named after its discoverer, astronomer Jay Lockman.

NGC 3256 Peculiar galaxy in the constellation Vela

NGC 3256 is a peculiar galaxy formed from the collision of two separate galaxies in the constellation of Vela. NGC 3256 is located about 100 million light years away and belongs to the Hydra-Centaurus supercluster complex. NGC 3256 provides a nearby template for studying the properties of young star clusters in tidal tails. The system hides a double nucleus and a tangle of dust lanes in the central region. The telltale signs of the collision are two extended luminous tails swirling out from the galaxy. The tails are studded with a particularly high density of star clusters. NGC 3256 is the most luminous galaxy in the infrared spectrum located within z 0.01 from Earth.

References

  1. Taylor, Kate. "NASA spots glow of universe's first objects." TG Daily, June 8, 2012.
  2. M.G. Hauser & E. Dwek (2001). "The Cosmic Infrared Background: Measurements and Implications". Annual Review of Astronomy & Astrophysics. 37: 249–307. arXiv: astro-ph/0105539 . Bibcode:2001ARA&A..39..249H. doi:10.1146/annurev.astro.39.1.249. S2CID   45573664.
  3. A. Kashlinsky (2005). "Cosmic infrared background and early galaxy evolution". Physics Reports. 409 (6): 361–438. arXiv: astro-ph/0412235 . Bibcode:2005PhR...409..361K. doi:10.1016/j.physrep.2004.12.005. S2CID   14705180.
  4. Cooray; et al. (22 October 2012). "A measurement of the intrahalo light fraction with near-infrared background anisotropies". Nature. arXiv: 1210.6031v1 .
  5. Zemcov; et al. (5 November 2014). "On the Origin of Near-Infrared Extragalactic Background Light Anisotropy". Nature. arXiv: 1411.1411 .
  6. P. Ábrahám; et al. (1997). "Search for brightness fluctuations in the zodiacal light at 25 MU M with ISO". Astronomy & Astrophysics. 328: 702–705. Bibcode:1997A&A...328..702A.
  7. Cs. Kiss; et al. (2001). "Sky confusion noise in the far-infrared: Cirrus, galaxies and the cosmic far-infrared background". Astronomy & Astrophysics. 379 (3): 1161–1169. arXiv: astro-ph/0110143 . Bibcode:2001A&A...379.1161K. doi:10.1051/0004-6361:20011394. S2CID   14761975.
  8. G. Lagache; et al. (2007). "Correlated anisotropies in the cosmic far-infrared background detected by MIPS/Spitzer: Constraint on the bias". Astrophysical Journal. 665 (2): L89–L92. arXiv: 0707.2443 . Bibcode:2007ApJ...665L..89L. doi:10.1086/521301. S2CID   16177825.
  9. H. Dole; et al. (2004). "Far-infrared Source Counts at 70 and 160 Microns in Spitzer Deep Surveys". Astrophysical Journal Supplement Series. 154 (1): 87–92. arXiv: astro-ph/0406021 . Bibcode:2004ApJS..154...87D. doi:10.1086/422472. S2CID   24446702.
  10. G. Lagache; et al. (2003). "Modeling infrared galaxy evolution using a phenomenological approach". Monthly Notices of the Royal Astronomical Society . 338 (3): 555–571. arXiv: astro-ph/0209115 . Bibcode:2003MNRAS.338..555L. doi:10.1046/j.1365-8711.2003.05971.x. S2CID   18504783.