Aluminium foam sandwich

Last updated
Aluminium foam sandwich Aluminium foam sandwich.jpg
Aluminium foam sandwich

Aluminium foam sandwich (AFS) is a sandwich panel product which is made of two metallic dense face sheets and a metal foam core made of an aluminium alloy. AFS is an engineering structural material owing to its stiffness-to-mass ratio and energy absorption capacity ideal for application such as the shell of a high-speed train. [1]

Contents

Production and materials

In terms of the bonding between face sheets and foam core the processing of AFS is categorised into two ways – ex-situ and in-situ bonding. [2]

Ex-situ bonded AFS

Ex-situ bonding is achieved by gluing face sheets with an aluminium foam by adhesive bonding, brazing or diffusion bonding. Foams used in this method are either closed-cell or open-cell. When a closed-cell foam is used then it is produced from aluminium alloys either by liquid metal route (e.g. Alporas, [3] Cymat [4] ) or by powder metallurgy [2] route. Open-cell foam core is made of aluminium and other metals as well. Face sheets are chosen from a variety of aluminium alloy, and other metals such as steel.

In-situ bonded AFS

For in-situ bonded face sheets the core is closed-cell foam. The goal of in-situ bonding is to create a metallic bonding between the foam core and face sheets. This is achieved in three ways. A foamable precursor is expanded between two face sheets. When the liquid foam comes in contact with the solid face sheets a metallic bond is established. This is difficult to realize as the oxidation of both aluminium face sheets and foam prevent forming a sound bonding. There is also a risk of melting the face sheets. This procedure is successful when steel is used as face sheets instead of aluminium, while the foam core is aluminium. [5]

Another strategy is to rapidly solidify the surface of a foamable molten metal before it can foam into a dense skin while the interior of the metal evolves to a foam structure. This process yields in an integral-type foam structure. [6] Integral foam sandwich is made of aluminium alloys (AlCu4, AlSi9Cu3) and magnesium alloys (AZ91, AM60). [6] [7] [8] In this process the material for the core and face sheet is the same.

The third way to achieve in-situ bonding consists of compaction of metal powders together with face sheets. This sandwich-compact assembly goes through several rolling steps to attain desired precursor and face sheet thickness. After which this three-layer composite is heated to transform the core layer into foam. [2] [9] The melting point of the face sheet material is above the melting point of the foamable precursor material. The precursor composition is usually Al-Si, Al-Si-Cu or Al-Si-Mg alloys while the face sheets are 3xxx, 5xxx and 6xxx series aluminium alloys.

Pre- and post-processing of AFS panels

It is possible to manufacture a complicated 3D shape from in-situ bonded AFS. In case of the second type, i.e. integral foam moulding, the desired geometry of the foamed part is achieved by designing the mould inside which the foam is cast. [10]

In the case of the third type the three-layer composite precursor is reshaped prior to foaming. Heating of such part yields in a 3D shaped foam part. [2] [9] The three-layer composite AFS panels are also reshaped after foaming by forging. If an AFS is made of heat treatable alloys, the strength is further enhanced by age hardening. [2] In order to join two AFS parts or to join an AFS part with a metallic part several joining technologies are employed, such as laser welding, TIG welding, MIG welding, riveting, etc. [11] [12]

Literature

Related Research Articles

<span class="mw-page-title-main">Alloy</span> Mixture or metallic solid solution composed of two or more elements

An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductility, opacity, and luster, but may have properties that differ from those of the pure metals, such as increased strength or hardness. In some cases, an alloy may reduce the overall cost of the material while preserving important properties. In other cases, the mixture imparts synergistic properties to the constituent metal elements such as corrosion resistance or mechanical strength.

<span class="mw-page-title-main">Metal</span> Type of material

A metal is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typically ductile and malleable. These properties are the result of the metallic bond between the atoms or molecules of the metal.

<span class="mw-page-title-main">Metallurgy</span> Field of science that studies the physical and chemical behavior of metals

Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys.

<span class="mw-page-title-main">Powder metallurgy</span> Process of sintering metal powders

Powder metallurgy (PM) is a term covering a wide range of ways in which materials or components are made from metal powders. PM processes can reduce or eliminate the need for subtractive processes in manufacturing, lowering material losses and reducing the cost of the final product.

Refractory metals are a class of metals that are extraordinarily resistant to heat and wear. The expression is mostly used in the context of materials science, metallurgy and engineering. The definition of which elements belong to this group differs. The most common definition includes five elements: two of the fifth period and three of the sixth period. They all share some properties, including a melting point above 2000 °C and high hardness at room temperature. They are chemically inert and have a relatively high density. Their high melting points make powder metallurgy the method of choice for fabricating components from these metals. Some of their applications include tools to work metals at high temperatures, wire filaments, casting molds, and chemical reaction vessels in corrosive environments. Partly due to the high melting point, refractory metals are stable against creep deformation to very high temperatures.

<span class="mw-page-title-main">Intermetallic</span> Type of metallic alloy

An intermetallic is a type of metallic alloy that forms an ordered solid-state compound between two or more metallic elements. Intermetallics are generally hard and brittle, with good high-temperature mechanical properties. They can be classified as stoichiometric or nonstoichiometic intermetallic compounds.

<span class="mw-page-title-main">Friction stir welding</span> Using a spinning tool to mix metal workpieces together at the joint, without melting them

Friction stir welding (FSW) is a solid-state joining process that uses a non-consumable tool to join two facing workpieces without melting the workpiece material. Heat is generated by friction between the rotating tool and the workpiece material, which leads to a softened region near the FSW tool. While the tool is traversed along the joint line, it mechanically intermixes the two pieces of metal, and forges the hot and softened metal by the mechanical pressure, which is applied by the tool, much like joining clay, or dough. It is primarily used on wrought or extruded aluminium and particularly for structures which need very high weld strength. FSW is capable of joining aluminium alloys, copper alloys, titanium alloys, mild steel, stainless steel and magnesium alloys. More recently, it was successfully used in welding of polymers. In addition, joining of dissimilar metals, such as aluminium to magnesium alloys, has been recently achieved by FSW. Application of FSW can be found in modern shipbuilding, trains, and aerospace applications.

<span class="mw-page-title-main">Metal foam</span> Porous material made from a metal

In materials science, a metal foam is a material or structure consisting of a solid metal with gas-filled pores comprising a large portion of the volume. The pores can be sealed or interconnected. The defining characteristic of metal foams is a high porosity: typically only 5–25% of the volume is the base metal. The strength of the material is due to the square–cube law.

<span class="mw-page-title-main">Sandwich-structured composite</span> Material composed of two thin, stiff skins around a lightweight core

In materials science, a sandwich-structured composite is a special class of composite materials that is fabricated by attaching two thin-but-stiff skins to a lightweight-but-thick core. The core material is normally of low strength, but its greater thickness provides the sandwich composite with high bending stiffness with overall low density.

<span class="mw-page-title-main">Alclad</span>

Alclad is a corrosion-resistant aluminium sheet formed from high-purity aluminium surface layers metallurgically bonded to high-strength aluminium alloy core material. It has a melting point of about 500 °C (932 °F). Alclad is a trademark of Alcoa but the term is also used generically.

<span class="mw-page-title-main">Clinching</span> Method of mechanically joining sheet metal

In metalworking, clinching or press-joining is a bulk sheet metal forming process aimed at joining thin metal sheets without additional components, using special tools to plastically form an interlock between two or more sheets. The process is generally performed at room temperature, but in some special cases the sheets can be pre-heated to improve the material ductility and thereby avoid the formation of cracks during the process. Clinching is characterized by a series of advantages over competitive technologies:

<span class="mw-page-title-main">Honeycomb structure</span> Natural or man-made structures that have the geometry of a honeycomb

Honeycomb structures are natural or man-made structures that have the geometry of a honeycomb to allow the minimization of the amount of used material to reach minimal weight and minimal material cost. The geometry of honeycomb structures can vary widely but the common feature of all such structures is an array of hollow cells formed between thin vertical walls. The cells are often columnar and hexagonal in shape. A honeycomb-shaped structure provides a material with minimal density and relative high out-of-plane compression properties and out-of-plane shear properties.

<span class="mw-page-title-main">Glass-to-metal seal</span> Airtight seal which joins glass and metal surfaces

Glass-to-metal seals are a type of mechanical seal which joins glass and metal surfaces. They are very important elements in the construction of vacuum tubes, electric discharge tubes, incandescent light bulbs, glass-encapsulated semiconductor diodes, reed switches, glass windows in metal cases, and metal or ceramic packages of electronic components.

<span class="mw-page-title-main">Sandwich panel</span> Structure made of three layers

A sandwich panel is any structure made of three layers: a low-density core, and a thin skin-layer bonded to each side. Sandwich panels are used in applications where a combination of high structural rigidity and low weight is required.

<span class="mw-page-title-main">Friction stir processing</span>

Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. This deformation is produced by forcibly inserting a non-consumable tool into the workpiece, and revolving the tool in a stirring motion as it is pushed laterally through the workpiece. The precursor of this technique, friction stir welding, is used to join multiple pieces of metal without creating the heat affected zone typical of fusion welding.

Cladding is the bonding together of dissimilar metals. It is different from fusion welding or gluing as a method to fasten the metals together. Cladding is often achieved by extruding two metals through a die as well as pressing or rolling sheets together under high pressure.

Transient liquid phase diffusion bonding (TLPDB) is a joining process that has been applied for bonding many metallic and ceramic systems which cannot be bonded by conventional fusion welding techniques. The bonding process produces joints with a uniform composition profile, tolerant of surface oxides and geometrical defects. The bonding technique has been exploited in a wide range of applications, from the production and repair of turbine engines in the aerospace industry, to nuclear power plants, and in making connections to integrated circuit dies as a part of the microelectronics industry.

<span class="mw-page-title-main">Post-transition metal</span> Category of metallic elements

The metallic elements in the periodic table located between the transition metals to their left and the chemically weak nonmetallic metalloids to their right have received many names in the literature, such as post-transition metals, poor metals, other metals, p-block metals and chemically weak metals. The most common name, post-transition metals, is generally used in this article.

<span class="mw-page-title-main">Aluminium joining</span>

Aluminium alloys are often used due to their high strength-to-weight ratio, corrosion resistance, low cost, high thermal and electrical conductivity. There are a variety of techniques to join aluminium including mechanical fasteners, welding, adhesive bonding, brazing, soldering and friction stir welding (FSW), etc. Various techniques are used based on the cost and strength required for the joint. In addition, process combinations can be performed to provide means for difficult-to-join assemblies and to reduce certain process limitations.

Titanium foams exhibit high specific strength, high energy absorption, excellent corrosion resistance and biocompatibility. These materials are ideally suited for applications within the aerospace industry. An inherent resistance to corrosion allows the foam to be a desirable candidate for various filtering applications. Further, titanium's physiological inertness makes its porous form a promising candidate for biomedical implantation devices. The largest advantage in fabricating titanium foams is that the mechanical and functional properties can be adjusted through manufacturing manipulations that vary porosity and cell morphology. The high appeal of titanium foams is directly correlated to a multi-industry demand for advancement in this technology.

References

  1. Ballecer, Robert (30 December 2014). "Aluminum Foam". twit.tv/show/padres-corner/18. TWiT.tv . Retrieved 31 December 2014.
  2. 1 2 3 4 5 J Banhart, H-W Seeliger, Aluminium foam sandwich panels: manufacture, metallurgy and applications, Advanced Engineering Materials, 2008, 10:793-802.
  3. A-M Harte, NA Fleck, MF Ashby, The fatigue strength of sandwich beams with an aluminium alloy foam core, International Journal of Fatigue, 2001, 23:499-507.
  4. I Elnasri, H Zhao, Y Girard, Perforation of aluminium foam core sandwich panels under impact loading, Journal of Physique, 2006, 134:921-927.
  5. R Neugebauer, C Lies, J Hohlfeld, T Hipke, Adhesion in sandwiches with aluminum foam core, Production Engineering Research and Development, 2007, 1:271-278.
  6. 1 2 C Körner, M Hirschmann, V Bräutigam, RF Singer, Endogenous particle stabilization during magnesium integral foam production, Advanced Engineering Materials, 2004, 6:385-390.
  7. H-D Kunze, J Baumeister, J Banhart, M Weber, P/M technology for the production of metal foams, Powder Metallurgy International, 1993, 25:182-185.
  8. H Wiehler, C Körner, RF Singer, High pressure integral foam moulding of aluminium – process technology, Advanced Engineering Materials, 2008, 10:171-178. doi : 10.1002/adem.200700267
  9. 1 2 H-W Seeliger, Aluminium foam sandwich (AFS) ready for market introduction, Advanced Engineering Materials, 2004, 6:448-451.
  10. Carolin Koerner, Book – Integral foam molding of light metals: technology, foam physics and foam simulation, Springer-Verlag Berlin Heidelberg, 2008, p.19.
  11. H-W Seeliger, Manufacture of aluminium foam sandwich (AFS) components, Advanced Engineering Materials, 2002, 4:753-758.
  12. Book - Handbook of cellular metals: production, processing, applications, Editors: H-P Degischer, B Kriszt, Wiley-VCH Verlag, 2002, p.119.