Cymat Technologies

Last updated
Cymat Technologies
Company type Public Corporation
Industry
Founded1995
Headquarters Mississauga, Ontario, Canada
Key people
Michael M. Liik (CEO and Executive Chairman of the Board)
Darryl Kleebaum (Chief Financial Officer)
ProductsStabilized Aluminum foam (SAF)
Website http://www.cymat.com/, https://www.alusion.com/alusionhome

Cymat Technologies is an innovative materials technology company based out of Mississauga, Ontario, Canada, and one of the world leaders [1] in the production of stabilized aluminum foam.

Contents

Business

Cymat Technologies has the worldwide rights, through patents and licenses, to manufacture Stabilized Aluminum Foam (“SAF”). Cymat is focused on producing SAF for architecture, blast mitigation and automotive industries. The company markets architectural SAF under the Alusion™ trademark and automotive and blast mitigation SAF under the SmartMetal™ trademark.

Cymat Technologies operates out of its manufacturing plant in Toronto, Canada. The plant can manufacture approximately $50 million in stabilized aluminum foam annually. [2]

Process

As described in the patent originally created by Alcan [3] with parallel patents created by Norsk Hydro, "Stabilized Aluminum Foam" is generated in a continuous casting process via direct shop air injection into a Metal Matrix Composite (MMC) melt. The MMC comprises an Al-Si cast alloy with a volume of particle in suspension. The purpose of the particle is to provide melt stability and must adhere to the following criteria; [3]

Stabilized Aluminum Foam cast by Cymat Technologies. Stabilized Aluminium Foam.JPG
Stabilized Aluminum Foam cast by Cymat Technologies.

Though it is a controversial topic, it is widely accepted that the presence of the solid particles aid in the "stabilization" of bubbles. [4] It is thought that particulate aids in foam stability via the following mechanisms:

  • Slows the flow of molten metal through the cell walls to help maintain a stable structure.
  • A repulsive force which helps to maintain the cell wall thickness between two adjacent cells.
  • Presence of particulate in the foam helps to impede the flow of molten metal in the direction of gravity by obstructing the cell walls and sustaining the liquid.

The process for the creation of Stabilized Aluminum Foam and can be broken down into these 4 rudimentary steps:

  1. Melting
  2. Air Injection
  3. Casting
  4. Solidification

Once the raw MMC is melted, it is then transferred to the foaming apparatus where gas is injected into the melt and dispersed using either rotating impellers or vibrating nozzles. [8] The bubbles rise to the surface and the resultant metal foam mixture cast will rise out of the foaming apparatus due to its density relative to that of the molten MMC. As the metallic foam is being cast, it is simultaneously drawn off the surface by, for example, a conveyor belt. [9] While it is drawn off, it is then cooled and forms a porous metallic structure.

See also

Related Research Articles

In materials science, a metal matrix composite (MMC) is a composite material with fibers or particles dispersed in a metallic matrix, such as copper, aluminum, or steel. The secondary phase is typically a ceramic or another metal. They are typically classified according to the type of reinforcement: short discontinuous fibers (whiskers), continuous fibers, or particulates. There is some overlap between MMCs and cermets, with the latter typically consisting of less than 20% metal by volume. When at least three materials are present, it is called a hybrid composite. MMCs can have much higher strength-to-weight ratios, stiffness, and ductility than traditional materials, so they are often used in demanding applications. MMCs typically have lower thermal and electrical conductivity and poor resistance to radiation, limiting their use in the very harshest environments.

<span class="mw-page-title-main">Ingot</span> Piece of relatively pure metal

An ingot is a piece of relatively pure material, usually metal, that is cast into a shape suitable for further processing. In steelmaking, it is the first step among semi-finished casting products. Ingots usually require a second procedure of shaping, such as cold/hot working, cutting, or milling to produce a useful final product. Non-metallic and semiconductor materials prepared in bulk form may also be referred to as ingots, particularly when cast by mold based methods. Precious metal ingots can be used as currency, or as a currency reserve, as with gold bars.

<span class="mw-page-title-main">Amorphous metal</span> Solid metallic material with disordered atomic-scale structure

An amorphous metal is a solid metallic material, usually an alloy, with disordered atomic-scale structure. Most metals are crystalline in their solid state, which means they have a highly ordered arrangement of atoms. Amorphous metals are non-crystalline, and have a glass-like structure. But unlike common glasses, such as window glass, which are typically electrical insulators, amorphous metals have good electrical conductivity and can show metallic luster.

<span class="mw-page-title-main">Powder metallurgy</span> Process of sintering metal powders

Powder metallurgy (PM) is a term covering a wide range of ways in which materials or components are made from metal powders. PM processes can reduce or eliminate the need for subtractive processes in manufacturing, lowering material losses and reducing the cost of the final product.

Aluminium–silicon alloys or Silumin is a general name for a group of lightweight, high-strength aluminium alloys based on an aluminum–silicon system (AlSi) that consist predominantly of aluminum - with silicon as the quantitatively most important alloying element. Pure AlSi alloys cannot be hardened, the commonly used alloys AlSiCu and AlSiMg can be hardened. The hardening mechanism corresponds to that of AlCu and AlMgSi.

<span class="mw-page-title-main">Die casting</span> Metal casting process

Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mold cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly to an injection mold during the process. Most die castings are made from non-ferrous metals, specifically zinc, copper, aluminium, magnesium, lead, pewter, and tin-based alloys. Depending on the type of metal being cast, a hot- or cold-chamber machine is used.

<span class="mw-page-title-main">Lost-foam casting</span> Type of evaporative-pattern casting process

Lost-foam casting (LFC) is a type of evaporative-pattern casting process that is similar to investment casting except foam is used for the pattern instead of wax. This process takes advantage of the low boiling point of polymer foams to simplify the investment casting process by removing the need to melt the wax out of the mold.

<span class="mw-page-title-main">Metal foam</span> Porous material made from a metal

In materials science, a metal foam is a material or structure consisting of a solid metal with gas-filled pores comprising a large portion of the volume. The pores can be sealed or interconnected. The defining characteristic of metal foams is a high porosity: typically only 5–25% of the volume is the base metal. The strength of the material is due to the square–cube law.

<span class="mw-page-title-main">Continuous casting</span> Process for solidifying molten metal

Continuous casting, also called strand casting, is the process whereby molten metal is solidified into a "semifinished" billet, bloom, or slab for subsequent rolling in the finishing mills. Prior to the introduction of continuous casting in the 1950s, steel was poured into stationary molds to form ingots. Since then, "continuous casting" has evolved to achieve improved yield, quality, productivity and cost efficiency. It allows lower-cost production of metal sections with better quality, due to the inherently lower costs of continuous, standardised production of a product, as well as providing increased control over the process through automation. This process is used most frequently to cast steel. Aluminium and copper are also continuously cast.

<span class="mw-page-title-main">Ceramic engineering</span> Science and technology of creating objects from inorganic, non-metallic materials

Ceramic engineering is the science and technology of creating objects from inorganic, non-metallic materials. This is done either by the action of heat, or at lower temperatures using precipitation reactions from high-purity chemical solutions. The term includes the purification of raw materials, the study and production of the chemical compounds concerned, their formation into components and the study of their structure, composition and properties.

Spray forming, also known as spray casting, spray deposition and in-situ compaction, is a method of casting near net shape metal components with homogeneous microstructures via the deposition of semi-solid sprayed droplets onto a shaped substrate. In spray forming an alloy is melted, normally in an induction furnace, then the molten metal is slowly poured through a conical tundish into a small-bore ceramic nozzle. The molten metal exits the furnace as a thin free-falling stream and is broken up into droplets by an annular array of gas jets, and these droplets then proceed downwards, accelerated by the gas jets to impact onto a substrate. The process is arranged such that the droplets strike the substrate whilst in the semi-solid condition, this provides sufficient liquid fraction to 'stick' the solid fraction together. Deposition continues, gradually building up a spray formed billet of metal on the substrate.

Aluminium carbide, chemical formula Al4C3, is a carbide of aluminium. It has the appearance of pale yellow to brown crystals. It is stable up to 1400 °C. It decomposes in water with the production of methane.

<span class="mw-page-title-main">Melt spinning</span>

Melt spinning is a metal forming technique that is typically used to form thin ribbons of metal or alloys with a particular atomic structure.

Ceramic foam is a tough foam made from ceramics. Manufacturing techniques include impregnating open-cell polymer foams internally with ceramic slurry and then firing in a kiln, leaving only ceramic material. The foams may consist of several ceramic materials such as aluminium oxide, a common high-temperature ceramic, and gets insulating properties from the many tiny air-filled voids within the material.

A blowing agent is a substance which is capable of producing a cellular structure via a foaming process in a variety of materials that undergo hardening or phase transition, such as polymers, plastics, and metals. They are typically applied when the blown material is in a liquid stage. The cellular structure in a matrix reduces density, increasing thermal and acoustic insulation, while increasing relative stiffness of the original polymer.

<span class="mw-page-title-main">Full-mold casting</span>

Full-mold casting is an evaporative-pattern casting process which is a combination of sand casting and lost-foam casting. It uses an expanded polystyrene foam pattern which is then surrounded by sand, much like sand casting. The metal is then poured directly into the mold, which vaporizes the foam upon contact.

A casting defect is an undesired irregularity in a metal casting process. Some defects can be tolerated while others can be repaired, otherwise they must be eliminated. They are broken down into five main categories: gas porosity, shrinkage defects, mould material defects, pouring metal defects, and metallurgical defects.

An inclusion is a solid particle in liquid aluminium alloy. It is usually non-metallic and can be of different nature depending on its source.

<span class="mw-page-title-main">Aluminium foam sandwich</span>

Aluminium foam sandwich (AFS) is a sandwich panel product which is made of two metallic dense face sheets and a metal foam core made of an aluminium alloy. AFS is an engineering structural material owing to its stiffness-to-mass ratio and energy absorption capacity ideal for application such as the shell of a high-speed train.

Titanium foams exhibit high specific strength, high energy absorption, excellent corrosion resistance and biocompatibility. These materials are ideally suited for applications within the aerospace industry. An inherent resistance to corrosion allows the foam to be a desirable candidate for various filtering applications. Further, titanium's physiological inertness makes its porous form a promising candidate for biomedical implantation devices. The largest advantage in fabricating titanium foams is that the mechanical and functional properties can be adjusted through manufacturing manipulations that vary porosity and cell morphology. The high appeal of titanium foams is directly correlated to a multi-industry demand for advancement in this technology.

References

  1. Cymat Technologies
  2. "Cymat Technologies (CYMHF) Partners with Alucoil SA to Tap Multi-Billion Dollar Panel Industry – Investment Watch".
  3. 1 2 Patent US4973358
  4. 1 2 3 M. Mukherjee, Evolution of Metal Foams during Solidification, Page 20, October 14, 2008
  5. 1 2 S.W. IP, Y. Wang and J.M. Toguri, Aluminum Foam Stabilization by Solid Particles, Page 2, March 30, 1998
  6. W. Deqing and S. Ziyuan, Effect of Ceramic Particles on Cell Size and Wall Thickness of Aluminum Foam, May 15, 2003
  7. C. Korner, Foam Formation Mechanisms in Particle Suspensions applied to Metal Foams, September 28, 2007
  8. Manufacturing Routes for Metallic Foams
  9. Method of producing lightweight foamed metal