This article needs additional citations for verification .(August 2010) |
A sandwich panel is any structure made of three layers: a low-density core (PIR, mineral wool, XPS), and a thin skin-layer bonded to each side. Sandwich panels are used in applications where a combination of high structural rigidity and low weight is required.
The structural functionality of a sandwich panel is similar to the classic I-beam, where two face sheets primarily resist the in-plane and lateral bending loads (similar to flanges of an I- beam), while the core material mainly resists the shear loads (similar to the web of an I-beam). [1] The idea is to use a light/soft but thick layer for the core and strong but thin layers for face sheets. This results in increasing the overall thickness of the panel, which often improves the structural attributes, like bending stiffness, and maintains or even reduces the weight. [2]
Sandwich panels are an example of a sandwich-structured composite: the strength and lightness of this technology makes it popular and widespread. Its versatility means that the panels have many applications and come in many forms: the core and skin materials can vary widely and the core may be a honeycomb or a solid filling. Enclosed panels are termed cassettes.
One obvious application is in aircraft, where mechanical performance and weight-saving are essential. Transportation and automotive applications also exist. [3]
In building and construction, these prefabricated products designed for use as building envelopes. They appear in industrial and office buildings, in clean and cold rooms and also in private houses, whether renovation or new-build. They combine a high-quality product with high flexibility regarding design. They generally have a good energy-efficiency and sustainability. [4]
In packaging, applications include fluted polypropylene boards and polypropylene honeycomb boards. [5]
Due to the ability of 3D printers to fabricate complex sandwich panels there has recently been a flourishing of research in this area covering energy absorption, [6] natural fiber, [7] with continuous synthetic fibers, [8] and for vibration. [9] The promise of this technology is for new geometric complexities in sandwich panels not possible with other fabrication processes.
Structural insulated panels or structural insulating panels (commonly referred to as SIPs) are panels used as a building material.
Aluminium composite panels (ACP), made of aluminium composite material (ACM), are flat panels consisting of two thin coil-coated aluminium sheets bonded to a non-aluminium core. ACPs are frequently used for external cladding or facades of buildings, insulation, and signage. [10]
ACP is mainly used for external and internal architectural cladding or partitions, false ceilings, signage, machine coverings, container construction, etc. Applications of ACP are not limited to external building cladding, but can also be used in any form of cladding such as partitions, false ceilings, etc. ACP is also widely used within the signage industry as an alternative to heavier, more expensive substrates.
ACP has been used as a light-weight but very sturdy material in construction, particularly for transient structures like trade show booths and similar temporary elements. It has recently also been adopted as a backing material for mounting fine art photography, often with an acrylic finish using processes like Diasec or other face-mounting techniques. ACP material has been used in famous structures as Spaceship Earth, VanDusen Botanical Garden, and the Leipzig branch of the German National Library. [11]
These structures made optimal use of ACP through its cost, durability, and efficiency. Its flexibility, low weight, and easy forming and processing allow for innovative design with increased rigidity and durability. Where the core material is flammable, the usage must be considered. The standard ACP core is polyethylene (PE) or polyurethane (PU). These materials do not have good fire-resistant (FR) properties unless specially treated and are therefore not generally suitable as a building material for dwellings; several jurisdictions have banned their use completely. [12] Arconic, owner of the Reynobond brand, cautions the prospective buyer. Concerning the core, it says that distance of the panel from the ground is a determinant of "which materials are safer to use". In a brochure it has a graphic of a building in flames, with the caption "[a]s soon as the building is higher than the firefighters’ ladders, it has to be conceived with an incombustible material". It shows that the Reynobond polyethylene product is for up to circa 10 meters; the fire-retardant product (c. 70% mineral core) from there to up to c. 30 meters, the height of the ladder; and the European A2-rated product (c. 90% mineral core) for anything above that. In this brochure, Fire Safety in High-rise Buildings: Our Fire Solutions, product specification is only given for the last two products. [13]
The cladding materials, in this case having the highly combustible Polyethylene (PE) core, were implicated as the principal cause of the rapid spread of flame in the 2017 Grenfell Tower fire in London. [14] It has also been involved in high-rise building fires in Melbourne, Australia; France; the United Arab Emirates; South Korea; and the United States. [15] Fire-rated cores (typically designated as "FR" by the manufacturers) are a safer alternative as they have a maximum of 30% Polyethylene Content, and will self-extinguish in the absence of heat/ventilation. [16] As with any building product, fitness for use is dependent on multiple other products and methods. In the case of ACP, building codes in USA have many requirements related to the wall assembly depending on the materials used and the building type. When these building codes are followed, the FR core products are safe. Note that the term ACP does not apply to sandwich panels with Mineral Wool cores, which fall under the category of Insulated Metal Panels (IMP).
The aluminium sheets can be coated with polyvinylidene fluoride (PVDF), fluoropolymer resins (FEVE), or polyester paint. Aluminium can be painted in any kind of colour, and ACPs are produced in a wide range of metallic and non-metallic colours as well as patterns that imitate other materials, such as wood or marble. The core is commonly low-density polyethylene (PE), or a mix of low-density polyethylene and mineral material to exhibit fire retardant properties. [10]
3A Composites (formerly Alcan Composites & Alusuisse) invented aluminium composites in 1964 - as a joint invention with BASF- and commercial production of Alucobond commenced in 1969. The product was patented in 1971, a patent which expired in 1991. After the expiration of the patent several companies started commercial production such as Reynobond (1991), Alpolic (Mitsubishi Chemicals, 1995), etalbond (1995). Today, it is estimated [ by whom? ] that more than 200 companies across the world are producing ACP.
Sandwich panel construction techniques have experienced considerable development in the last 40 years. Previously, sandwich panels were considered products suitable only for functional constructions and industrial buildings. However, their good insulation characteristics, their versatility, quality and appealing visual appearance, have resulted in a growing and widespread use of the panels across a huge variety of buildings.
The qualities that have produced the rapid growth in the use of sandwich panels, particularly in construction, include:
BoPET is a polyester film made from stretched polyethylene terephthalate (PET) and is used for its high tensile strength, chemical stability, dimensional stability, transparency reflectivity, and electrical insulation.. When metallized, it has gas and moisture barrier properties, The film is "biaxially oriented", which means that the polymer chains are oriented parallel to the plane of the film, and therefore oriented in two axes. A variety of companies manufacture boPET and other polyester films under different brand names. In the UK and US, the best-known trade names are Mylar, Melinex, Lumirror and Hostaphan. It was the first biaxially oriented polymer to be manufactured on a mass commercial scale.
Fiberglass or fibreglass is a common type of fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened into a sheet called a chopped strand mat, or woven into glass cloth. The plastic matrix may be a thermoset polymer matrix—most often based on thermosetting polymers such as epoxy, polyester resin, or vinyl ester resin—or a thermoplastic.
Engineered wood, also called mass timber, composite wood, man-made wood, or manufactured board, includes a range of derivative wood products which are manufactured by binding or fixing the strands, particles, fibres, or veneers or boards of wood, together with adhesives, or other methods of fixation to form composite material. The panels vary in size but can range upwards of 64 by 8 feet and in the case of cross-laminated timber (CLT) can be of any thickness from a few inches to 16 inches (410 mm) or more. These products are engineered to precise design specifications, which are tested to meet national or international standards and provide uniformity and predictability in their structural performance. Engineered wood products are used in a variety of applications, from home construction to commercial buildings to industrial products. The products can be used for joists and beams that replace steel in many building projects. The term mass timber describes a group of building materials that can replace concrete assemblies.
Drywall is a panel made of calcium sulfate dihydrate (gypsum), with or without additives, typically extruded between thick sheets of facer and backer paper, used in the construction of interior walls and ceilings. The plaster is mixed with fiber ; plasticizer, foaming agent; and additives that can reduce mildew, flammability, and water absorption.
A structural insulated panel, or structural insulating panel, (SIP), is a form of sandwich panel used as a building material in the construction industry.
Siding or wall cladding is the protective material attached to the exterior side of a wall of a house or other building. Along with the roof, it forms the first line of defense against the elements, most importantly sun, rain/snow, heat and cold, thus creating a stable, more comfortable environment on the interior side. The siding material and style also can enhance or detract from the building's beauty. There is a wide and expanding variety of materials to side with, both natural and artificial, each with its own benefits and drawbacks. Masonry walls as such do not require siding, but any wall can be sided. Walls that are internally framed, whether with wood, or steel I-beams, however, must always be sided.
Wood–plastic composites (WPCs) are composite materials made of wood fiber/wood flour and thermoplastic(s) such as polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), or polylactic acid (PLA).
In materials science, a metal foam is a material or structure consisting of a solid metal with gas-filled pores comprising a large portion of the volume. The pores can be sealed or interconnected. The defining characteristic of metal foams is a high porosity: typically only 5–25% of the volume is the base metal. The strength of the material is due to the square–cube law.
Polyisocyanurate, also referred to as PIR, polyol, or ISO, is a thermoset plastic typically produced as a foam and used as rigid thermal insulation. The starting materials are similar to those used in polyurethane (PUR) except that the proportion of methylene diphenyl diisocyanate (MDI) is higher and a polyester-derived polyol is used in the reaction instead of a polyether polyol. The resulting chemical structure is significantly different, with the isocyanate groups on the MDI trimerising to form isocyanurate groups which the polyols link together, giving a complex polymeric structure.
Precast concrete is a construction product produced by casting concrete in a reusable mold or "form" which is then cured in a controlled environment, transported to the construction site and maneuvered into place; examples include precast beams, and wall panels, floors, roofs, and piles. In contrast, cast-in-place concrete is poured into site-specific forms and cured on site.
In materials science, a sandwich-structured composite is a special class of composite materials that is fabricated by attaching two thin-but-stiff skins to a lightweight-but-thick core. The core material is normally of low strength, but its greater thickness provides the sandwich composite with high bending stiffness with overall low density.
Glass fiber reinforced concrete (GFRC) is a type of fiber-reinforced concrete. The product is also known as glassfibre reinforced concrete or GRC in British English. Glass fiber concretes are mainly used in exterior building façade panels and as architectural precast concrete. Somewhat similar materials are fiber cement siding and cement boards.
Building insulation materials are building materials that form the thermal envelope of a building. As thermal insulation they reduce the heating energy requirement or the cooling load of buildings ; they can also provide soundproofing.
Honeycomb structures are natural or man-made structures that have the geometry of a honeycomb to allow the minimization of the amount of used material to reach minimal weight and minimal material cost. The geometry of honeycomb structures can vary widely but the common feature of all such structures is an array of hollow cells formed between thin vertical walls. The cells are often columnar and hexagonal in shape. A honeycomb-shaped structure provides a material with minimal density and relative high out-of-plane compression properties and out-of-plane shear properties.
Pipe Insulation is thermal or acoustic insulation used on pipework.
Cladding is the application of one material over another to provide a skin or layer. In construction, cladding is used to provide a degree of thermal insulation and weather resistance, and to improve the appearance of buildings. Cladding can be made of any of a wide range of materials including wood, metal, brick, vinyl, and composite materials that can include aluminium, wood, blends of cement and recycled polystyrene, wheat/rice straw fibres. Rainscreen cladding is a form of weather cladding designed to protect against the elements, but also offers thermal insulation. The cladding does not itself need to be waterproof, merely a control element: it may serve only to direct water or wind safely away in order to control run-off and prevent its infiltration into the building structure. Cladding may also be a control element for noise, either entering or escaping. Cladding can become a fire risk by design or material.
Aluminium foam sandwich (AFS) is a sandwich panel product which is made of two metallic dense face sheets and a metal foam core made of an aluminium alloy. AFS is an engineering structural material owing to its stiffness-to-mass ratio and energy absorption capacity ideal for application such as the shell of a high-speed train.
On 14 June 2017, a high-rise fire broke out in the 24-storey Grenfell Tower block of flats in North Kensington, West London, England, at 00:54 BST and burned for 60 hours. Seventy people died at the scene and two people died later in hospital, with more than 70 injured and 223 escaping. It was the deadliest structural fire in the United Kingdom since the 1988 Piper Alpha oil-platform disaster and the worst UK residential fire since the Blitz of World War II.
Mineral bonded wood wool boards are building boards made of wood wool fibres, water and the binding agents cement, caustic magnesia and gypsum. Mineral bound wood wool boards are used in a wide range of applications, e.g., thermal insulation, acoustic insulation, indoor decoration, etc.