Amsterdam criteria

Last updated

The Amsterdam criteria are a set of diagnostic criteria used by doctors to help identify families which are likely to have Lynch syndrome , also known as hereditary nonpolyposis colorectal cancer (HNPCC). [1] [2] [3] [4]

Contents

The Amsterdam criteria arose as a result of a meeting of the International Collaborative Group on Hereditary Non-Polyposis Colon Cancer in Amsterdam, in 1990. [5] Following this, some of the genetic mechanisms underlying Lynch syndrome were elucidated during the 1990s and the significance of tumours outside the colon, such as those of the endometrium, small intestine and ureter, became clearer. These changes in the knowledge of the syndrome lead to a revision of the Amsterdam criteria and were published in Gastroenterology journal in 1999. [4] [5]

Criteria

The initial Amsterdam criteria were a series of clinical criteria that were colloquially known as the 3-2-1 rule. They were formulated to serve as a common starting point for future research into the genetics underlying the disease. The criteria were as follows:

  1. At least 3 relatives with histologically confirmed colorectal cancer, 1 of whom is a first degree relative of the other 2; familial adenomatous polyposis should be excluded;
  2. At least 2 successive generations involved;
  3. At least 1 of the cancers diagnosed before age 50. [5]

These criteria were found to be too strict and were expanded to include the associated non-colorectal cancers in 1998. These were called the Amsterdam II clinical criteria for families with Lynch syndrome. [4] [6]

Each of the following criteria must be fulfilled:

Alternatives

In 1997, the National Cancer Institute published a set of recommendations called the Bethesda guidelines for the identification of individuals who should receive genetic testing for Lynch syndrome related tumors. [6] The NCI revisited and revised these criteria in 2004. [7]

The Revised Bethesda Guidelines are as follows:

The Revised Bethesda Guidelines have been reported as being more sensitive than the Amsterdam II Criteria in detecting individuals and families at risk of Lynch syndrome. [6]

Related Research Articles

<span class="mw-page-title-main">Colorectal cancer</span> Cancer of the colon or rectum

Colorectal cancer (CRC), also known as bowel cancer, colon cancer, or rectal cancer, is the development of cancer from the colon or rectum. Signs and symptoms may include blood in the stool, a change in bowel movements, weight loss, and fatigue. Most colorectal cancers are due to old age and lifestyle factors, with only a small number of cases due to underlying genetic disorders. Risk factors include diet, obesity, smoking, and lack of physical activity. Dietary factors that increase the risk include red meat, processed meat, and alcohol. Another risk factor is inflammatory bowel disease, which includes Crohn's disease and ulcerative colitis. Some of the inherited genetic disorders that can cause colorectal cancer include familial adenomatous polyposis and hereditary non-polyposis colon cancer; however, these represent less than 5% of cases. It typically starts as a benign tumor, often in the form of a polyp, which over time becomes cancerous.

<span class="mw-page-title-main">Polyp (medicine)</span> Abnormal growth of tissue projecting from a mucous membrane

In anatomy, a polyp is an abnormal growth of tissue projecting from a mucous membrane. If it is attached to the surface by a narrow elongated stalk, it is said to be pedunculated; if it is attached without a stalk, it is said to be sessile. Polyps are commonly found in the colon, stomach, nose, ear, sinus(es), urinary bladder, and uterus. They may also occur elsewhere in the body where there are mucous membranes, including the cervix, vocal folds, and small intestine. Some polyps are tumors (neoplasms) and others are non-neoplastic, for example hyperplastic or dysplastic, which are benign. The neoplastic ones are usually benign, although some can be pre-malignant, or concurrent with a malignancy.

<span class="mw-page-title-main">Adenoma</span> Type of benign tumor

An adenoma is a benign tumor of epithelial tissue with glandular origin, glandular characteristics, or both. Adenomas can grow from many glandular organs, including the adrenal glands, pituitary gland, thyroid, prostate, and others. Some adenomas grow from epithelial tissue in nonglandular areas but express glandular tissue structure. Although adenomas are benign, they should be treated as pre-cancerous. Over time adenomas may transform to become malignant, at which point they are called adenocarcinomas. Most adenomas do not transform. However, even though benign, they have the potential to cause serious health complications by compressing other structures and by producing large amounts of hormones in an unregulated, non-feedback-dependent manner. Some adenomas are too small to be seen macroscopically but can still cause clinical symptoms.

<span class="mw-page-title-main">Gardner's syndrome</span> Medical condition

Gardner's syndrome is a subtype of familial adenomatous polyposis (FAP). Gardner syndrome is an autosomal dominant form of polyposis characterized by the presence of multiple polyps in the colon together with tumors outside the colon. The extracolonic tumors may include osteomas of the skull, thyroid cancer, epidermoid cysts, fibromas, as well as the occurrence of desmoid tumors in approximately 15% of affected individuals.

<span class="mw-page-title-main">Familial adenomatous polyposis</span> Medical condition

Familial adenomatous polyposis (FAP) is an autosomal dominant inherited condition in which numerous adenomatous polyps form mainly in the epithelium of the large intestine. While these polyps start out benign, malignant transformation into colon cancer occurs when they are left untreated. Three variants are known to exist, FAP and attenuated FAP are caused by APC gene defects on chromosome 5 while autosomal recessive FAP is caused by defects in the MUTYH gene on chromosome 1. Of the three, FAP itself is the most severe and most common; although for all three, the resulting colonic polyps and cancers are initially confined to the colon wall. Detection and removal before metastasis outside the colon can greatly reduce and in many cases eliminate the spread of cancer.

<span class="mw-page-title-main">Hereditary nonpolyposis colorectal cancer</span> Autosomal dominant genetic condition associated with a high risk of cancer eg in the colon

Hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome is an autosomal dominant genetic condition that is associated with a high risk of colon cancer as well as other cancers including endometrial cancer, ovary, stomach, small intestine, hepatobiliary tract, upper urinary tract, brain, and skin. The increased risk for these cancers is due to inherited genetic mutations that impair DNA mismatch repair. It is a type of cancer syndrome. Because patients with Lynch syndrome can have polyps, the term HNPCC has fallen out of favor.

<span class="mw-page-title-main">Mismatch repair cancer syndrome</span> Medical condition

Mismatch repair cancer syndrome (MMRCS) is a cancer syndrome associated with biallelic DNA mismatch repair mutations. It is also known as Turcot syndrome and by several other names.

<span class="mw-page-title-main">Microsatellite instability</span> Condition of genetic hypermutability

Microsatellite instability (MSI) is the condition of genetic hypermutability that results from impaired DNA mismatch repair (MMR). The presence of MSI represents phenotypic evidence that MMR is not functioning normally.

<span class="mw-page-title-main">Muir–Torre syndrome</span> Medical condition

Muir–Torre syndrome is a rare hereditary, autosomal dominant cancer syndrome that is thought to be a subtype of HNPCC. Individuals are prone to develop cancers of the colon, genitourinary tract, and skin lesions, such as keratoacanthomas and sebaceous tumors. The genes affected are MLH1, MSH2, and more recently, MSH6, and are involved in DNA mismatch repair.

<span class="mw-page-title-main">MSH2</span> Protein-coding gene in the species Homo sapiens

DNA mismatch repair protein Msh2 also known as MutS homolog 2 or MSH2 is a protein that in humans is encoded by the MSH2 gene, which is located on chromosome 2. MSH2 is a tumor suppressor gene and more specifically a caretaker gene that codes for a DNA mismatch repair (MMR) protein, MSH2, which forms a heterodimer with MSH6 to make the human MutSα mismatch repair complex. It also dimerizes with MSH3 to form the MutSβ DNA repair complex. MSH2 is involved in many different forms of DNA repair, including transcription-coupled repair, homologous recombination, and base excision repair.

<span class="mw-page-title-main">MSH6</span> Protein-coding gene in the species Homo sapiens

MSH6 or mutS homolog 6 is a gene that codes for DNA mismatch repair protein Msh6 in the budding yeast Saccharomyces cerevisiae. It is the homologue of the human "G/T binding protein," (GTBP) also called p160 or hMSH6. The MSH6 protein is a member of the Mutator S (MutS) family of proteins that are involved in DNA damage repair.

Polyposis registries exist for the purpose of understanding the genetic disease familial adenomatous polyposis. The registries provide a service to doctors for identification, surveillance and management of families and individuals with high colorectal cancer risk from Familial Adenomatous Polyposis (FAP) and Hereditary Non-Polyposis Colorectal Cancer (HNPCC). The Centers for Disease Control of the United States provides, royalty-free, Registry Plus software for collecting and processing cancer registry data compliant with national standards established by health professionals and regulators to understand and address the burden of cancer more effectively.

<span class="mw-page-title-main">Colorectal polyp</span> Growth found in bowel wall

A colorectal polyp is a polyp occurring on the lining of the colon or rectum. Untreated colorectal polyps can develop into colorectal cancer.

<span class="mw-page-title-main">Sessile serrated lesion</span> Medical condition

A sessile serrated lesion (SSL) is a premalignant flat lesion of the colon, predominantly seen in the cecum and ascending colon.

<span class="mw-page-title-main">Hereditary cancer syndrome</span> Inherited genetic condition that predisposes a person to cancer

A hereditary cancer syndrome is a genetic disorder in which inherited genetic mutations in one or more genes predispose the affected individuals to the development of cancer and may also cause early onset of these cancers. Hereditary cancer syndromes often show not only a high lifetime risk of developing cancer, but also the development of multiple independent primary tumors.

Henry Thompson Lynch was an American physician noted for his discovery of familial susceptibility to certain kinds of cancer and his research into genetic links to cancer.

Peter Propping was a German human geneticist.

MUTYH-associated polyposis is an autosomal recessive polyposis syndrome. The disorder is caused by mutations in both alleles of the DNA repair gene, MUTYH. The MUTYH gene encodes a base excision repair protein, which corrects oxidative damage to DNA. Affected individuals have an increased risk of colorectal cancer, precancerous colon polyps (adenomas) and an increased risk of several additional cancers. About 1–2 percent of the population possess a mutated copy of the MUTYH gene, and less than 1 percent of people have the MUTYH associated polyposis syndrome. The presence of 10 or more colon adenomas should prompt consideration of MUTYH-associated polyposis, familial adenomatous polyposis and similar syndromes.

<span class="mw-page-title-main">Serrated polyposis syndrome</span> Medical condition

Serrated polyposis syndrome (SPS), previously known as hyperplastic polyposis syndrome, is a disorder characterized by the appearance of serrated polyps in the colon. While serrated polyposis syndrome does not cause symptoms, the condition is associated with a higher risk of colorectal cancer (CRC). The lifelong risk of CRC is between 25 and 40%. SPS is the most common polyposis syndrome affecting the colon, but is under recognized due to a lack of systemic long term monitoring. Diagnosis requires colonoscopy, and is defined by the presence of either of two criteria: ≥5 serrated lesions/polyps proximal to the rectum, or >20 serrated lesions/polyps of any size distributed throughout the colon with 5 proximal to the rectum.

Polymerase proofreading-associated polyposis (PPAP) is an autosomal dominant hereditary cancer syndrome, which is characterized by numerous polyps in the colon and an increased risk of colorectal cancer. It is caused by germline mutations in DNA polymerase ε (POLE) and δ (POLD1). Affected individuals develop numerous polyps called colorectal adenomas. Compared with other polyposis syndromes, Polymerase proofreading-associated polyposis is rare. Genetic testing can help exclude similar syndromes, such as Familial adenomatous polyposis and MUTYH-associated polyposis. Endometrial cancer, duodenal polyps and duodenal cancer may also occur.

References

  1. Lindor NM (October 2009). "Familial colorectal cancer type X: the other half of hereditary nonpolyposis colon cancer syndrome". Surg. Oncol. Clin. N. Am. 18 (4): 637–45. doi:10.1016/j.soc.2009.07.003. PMC   3454516 . PMID   19793571.
  2. "Recognizing Hereditary Cancer". Thomas Jefferson University Hospital.
  3. Half EE, Bresalier RS (2004). "Clinical Management of Hereditary Colorectal Cancer Syndromes". Medscape & EMedicine. 20 (1): 32–42. doi:10.1097/00001574-200401000-00008. PMID   15703618. S2CID   582715.
  4. 1 2 3 4 Vasen HF, Watson P, Mecklin JP, Lynch HT (1999). "New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC". Gastroenterology. 116 (6): 1453–6. doi: 10.1016/S0016-5085(99)70510-X . PMID   10348829.
  5. 1 2 3 4 Bellizzi AM, Frankel WL (2009). "Colorectal cancer due to deficiency in DNA mismatch repair function: a review". Advances in Anatomic Pathology. 16 (6): 405–417. doi:10.1097/PAP.0b013e3181bb6bdc. PMID   19851131. S2CID   25600795.
  6. 1 2 3 Virgínia Piñol; Antoni Castells; Montserrat Andreu; et al. (2005). "Accuracy of Revised Bethesda Guidelines, Microsatellite Instability, and Immunohistochemistry for the Identification of Patients With Hereditary Nonpolyposis Colorectal Cancer". JAMA. 293 (16): 1986–1994. doi: 10.1001/jama.293.16.1986 . PMID   15855432.
  7. Umar A, Boland CR, Terdiman JP, et al. (2004). "Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability". J Natl Cancer Inst. 96 (4): 261–268. doi:10.1093/jnci/djh034. PMC   2933058 . PMID   14970275.